
Undecidable Languages

1 Existence of Undecidable Languages

Proposition (The set of Turing machines is countable). Fix some input alphabet and tape
alphabet. The set of all Turing machines T = {M : M is a TM} is countable.

Proof. We will show T is countable by showing it is encodable.
First, based on Remark (??), we will normalize TMs and assume the set of states Q is

always {0, 1, 2, . . . , k − 1} ∪ {qacc, qrej} for some k ∈ N. Then given any Turing machine,
there is a way to encode it with a finite length string because each component of the 7-
tuple has a finite description. In particular, the mappingM 7→ 〈M〉, where 〈M〉 ∈ Σ∗, for
some finite alphabet Σ, is an injective map (two distinct Turing machines cannot have
the same encoding).1

Theorem (Almost all languages are undecidable). Fix some alphabet Σ. There are languages
L ⊆ Σ∗ that are not semi-decidable (and therefore undecidable as well).

Proof. To prove the result, we simply observe that the set of all languages is uncountable
whereas the set of semi-decidable languages is countable. First, consider the set of all
languages. Since a language L is defined to be a subset of Σ∗, the set of all languages
is ℘(Σ∗). By Corollary (??), we know that this set is uncountable. Now consider the set
of all semi-decidable languages over Σ, which we’ll denote by S. Let T be the set of
all TMs. By Proposition (The set of Turing machines is countable), we know that T is
countable. Furthermore, the mapping M 7→ L(M) can be viewed as a surjection from
T to S. So |S| ≤ |T |. Since T is countable, this shows S is countable and completes the
proof.

1One can spell out this argument more, but we choose not to do so here since even with this level of detail,
the argument is already convincing.

1

CMU CS251 Fall 2022

Remark (Constructive vs non-constructive proofs). The argument above is called non-
constructive because it does not present an explicit undecidable language. A constructive
argument would prove the undecidability of an explicit language. We present such an
argument below.

2 An Explicit Undecidable Language

Recall Important Note (??). Since our goal in this section is to find an explicit undecidable
language, it is natural to consider applying Lemma (??). And indeed, we can diagonalize
against the set of all decidable languages, or equivalently, diagonalize against the set D
of all decidable decision problems f : Σ∗ → {0, 1}. This gives us an explicit decision
problem, fD, that is undecidable. The reason we can apply diagonalization is because D
is an encodable set, as we have seen in the proof of Theorem (Almost all languages are
undecidable). Therefore |Σ∗| ≥ |D|, which means the condition to apply diagonalization
is satisfied.

Note (Diagonalization against a set of function-like objects). In the previous chapter, we
presented diagonalization with respect to a set of functions. However, Lemma (??) can
be applied in a slightly more general setting: it can be applied when F is a set of objects
that map elements of X to elements of Y (e.g. F can be a set of Turing machines which
map elements of Σ∗ to elements of {0, 1,∞}). In other words, elements of F do not have
to be functions as long as they are “function-like”. Once diagonalization is applied, one
gets an explicit function fD : X → Y such that no object in F matches the input/output
behavior of fD. We will illustrate this in the proof of the next theorem.

Definition (The SELF−ACCEPTSTM language/problem). We say that a TM M self-
accepts if M(〈M〉) = 1. The self-accepts problem is defined as the decision problem corre-
sponding to the language

SATM = SELF−ACCEPTSTM = {〈M〉 : M is a TM which self-accepts}.

The complement problem corresponds to the language

SATM = SELF−ACCEPTSTM = {〈M〉 : M is a TM which does not self-accept}.

Note that if a TM M does not self-accept, then M(〈M〉) ∈ {0,∞}.

Theorem (Turing’s 1st Undecidability Theorem). The language SATM is undecidable.

Proof. Our goal is to show that SATM is undecidable. To accomplish this, we can ei-
ther diagonalize against the set of all decidable decision problems or we can diagonalize
against the set of all TMs. To illustrate Note (Diagonalization against a set of function-
like objects), we will choose the second option and observe that the decision problem
corresponding to SATM is (arguably) the most natural diagonal element that the diago-
nalization spits out.

Recall that a decision problem f : Σ∗ → {0, 1} is decidable if there is a TM M whose
input/output behavior matches f , that is, for all x ∈ Σ∗, M(x) = f(x).

Now let F denote the set of all Turing machines. A Turing machine maps elements of
X = Σ∗ to an element of Y = {0, 1,∞}. Since the set of all Turing machines is countably
infinite and X is countably infinite, we have |X| = |F|. Therefore we can diagonalize
against F to construct fD : X → Y that cannot correspond to any Turing machine. If we
choose fD in a way such that the range is {0, 1}, then fD will be an undecidable decision
problem.

To explicitly define fD, we pick an injection from F to X = Σ∗. The most obvious
one is M 7→ 〈M〉. Then let

fD(〈M〉) =

{
1 if M(〈M〉) ∈ {0,∞} (i.e. M(〈M〉) does not accept);
0 otherwise.

2

CMU CS251 Fall 2022

By construction, any TMM differs from fD on input 〈M〉, i.e. for all TMsM ,M(〈M〉) 6=
fD(〈M〉). Therefore fD is not decidable by any TM.

Observe that the language corresponding to the decision problem fD is precisely
SATM.

Note (SATM is not semi-decidable). Note that the proof of the above theorem establishes
something stronger: the language SATM is not semi-decidable. To see this, recall that if
M is a semi-decider for fD, by definition, this implies that for all x ∈ Σ∗:

• if fD(x) = 1, then M(x) = 1,

• if fD(x) = 0, then M(x) ∈ {0,∞}.

However, by construction of fD, we know that for input x = 〈M〉, if fD(〈M〉) = 1 then
M(〈M〉) ∈ {0,∞}, and if fD(〈M〉) = 0, then M(〈M〉) = 1. So for all TMs M , M fails to
semi-decide fD on input x = 〈M〉.

3 More Undecidable Languages

Theorem (SATM is undecidable). The language SATM is undecidable.

Proof. We want to show that SATM is undecidable. The proof is by contradiction, so
assume SATM is decidable and let MSA be a decider for it. We will use this decider to
come up with a decider for SATM. Since SATM is undecidable (Theorem (Turing’s 1st
Undecidability Theorem)), this argument will allow us to reach a contradiction.

Here is our decider for SATM:

def MSA(〈TM M〉) :

1. Run MSA(〈M〉).
2. If it accepts, reject.

3. If it rejects, accept.

Given our assumption that MSA is a correct decider for SATM, it is clear that MSA is a
correct decider for SATM. In particular, if the input 〈M〉 is such that M self-accepts, then
MSA(〈M〉) would accept, and our machine would reject on line 2. And if the input 〈M〉
is such that M does not self-accept, MSA(〈M〉) would reject, and our machine would
accept on line 3. So for all possible inputs, our decider gives the correct answer.

Note (The complement of an undecidable language is undecidable). The general princi-
ple that the above theorem highlights is that since decidable languages are closed under
complementation, if L is an undecidable language, then L = Σ∗ \ L must also be unde-
cidable.

3

CMU CS251 Fall 2022

Definition (ACCEPTS and HALTS for TMs). We define the following languages:

ACCEPTSTM = {〈M,x〉 : M is a TM which accepts input x},
HALTSTM = {〈M,x〉 : M is a TM which halts on input x},

Theorem (ACCEPTSTM is undecidable). The language ACCEPTSTM is undecidable.

Proof. We want to show that ACCEPTSTM is undecidable. The proof is by contradiction,
so assume ACCEPTSTM is decidable and let MACCEPTS be a decider for it. We will use
this decider to come up with a decider for SATM. We have already proved Theorem
(SATM is undecidable), so this argument will allow us to reach a contradiction.

Here is our decider for SATM:

def MSA(〈TM M〉) :

1. Run MACCEPTS(〈M, 〈M〉〉).
2. If it accepts, accept.

3. If it rejects, reject.

Given our assumption that MACCEPTS is a correct decider for SATM, it is clear that MSA

is a correct decider for SATM. In particular, if the input 〈M〉 is such that M self-accepts,
then MACCEPTS(〈M, 〈M〉〉) would accept, and our machine would accept on line 2. And
if the input 〈M〉 is such that M does not self-accept, MACCEPTS(〈M, 〈M〉〉) would reject,
and our machine would reject on line 3. So for all possible inputs, our decider gives the
correct answer.

Theorem (HALTSTM is undecidable). The language HALTSTM is undecidable.

Proof. We want to show that HALTSTM is undecidable. The proof is by contradiction,
so assume HALTSTM is decidable and let MHALTS be a decider for it. We will use this
decider to come up with a decider for ACCEPTSTM. We have already proved Theorem
(ACCEPTSTM is undecidable), so this argument will allow us to reach a contradiction.

At a high level, if we wanted to come up with a TM solving ACCEPTSTM, on input
〈M,x〉, we could just try runningM(x) and return its answer. Unfortunately, this simple
strategy does not work becauseM(x) can possibly loop forever, so we would not end up
with a decider solving ACCEPTSTM. That being said, we are assuming we have access
to a correct decider for HALTS, namelyMHALTS. So then we can first check ifM(x) halts
or not. If it does not, we knowM(x) does not accept, so we can reject. If it does halt, then
it is safe to run M(x). We know it will accept or reject, and so we can return its answer.

Here is the description of our decider for ACCEPTSTM:

def MACCEPTS(〈TM M, string x〉) :

1. Run MHALTS(〈M,x〉).
2. If it rejects, reject.

3. Else:

4. Run M(x).

5. If it accepts, accept.

6. If it rejects, reject.

We have basically argued that this decider is correct in our high-level description of
the machine. But nevertheless, we’ll lay out the detailed argument here.

4

CMU CS251 Fall 2022

To show that MACCEPTS is a correct decider, we need to argue that for all possible
inputs, it gives the correct answer.

First let’s assume the input 〈M,x〉 is such that M(x) accepts. Then on line 1, MHALTS

will accept, meaning we will not reject on line 2. Then in line 4, M(x) will accept. And
therefore our machine will accept on line 5, as desired.

Next, let’s assume the input 〈M,x〉 is such that M(x) does not self-accept. There are
two possible cases for this: either M(x) loops, or M(x) rejects.

1. In the first case, M(x) loops. Then MHALTS(〈M,x〉) on line 1 would reject, and
therefore our machine would reject on line 2, giving the correct answer.

2. In the second case, M(x) rejects. Then MHALTS(〈M,x〉) on line 1 would accept,
meaning we would not reject on line 2. Afterwards, on line 4, M(x) would reject.
So our machine would reject on line 6 and give the correct answer.

We have shown that for all possible inputs, MACCEPTS gives the correct answer,
which completes the proof of correctness.

Proposition (SATM, ACCEPTSTM, HALTSTM are semi-decidable). The languages SATM,
ACCEPTSTM, and HALTSTM are all semi-decidable, i.e., they are all in RE.

Proof. Here are Turing machines that semi-decide SATM, ACCEPTSTM, and HALTSTM

respectively. It pretty much follows directly from the definition of semi-decidability that
they are correct, and therefore we omit explicitly spelling out the correctness proofs.

def MSA(〈TM M〉) :

1. Run M(〈M〉).
2. If it accepts, accept.

3. If it rejects, reject.

def MACCEPTS(〈TM M, string x〉) :

1. Run M(x).

2. If it accepts, accept.

3. If it rejects, reject.

def MHALTS(〈TM M, string x〉) :

1. Run M(x).

2. If it accepts or rejects, accept.

Theorem (R 6= RE). R 6= RE.

Proof. The languages SATM, ACCEPTSTM, and HALTSTM are all in RE but not in R.

5

CMU CS251 Fall 2022

4 Undecidability Proofs by Reductions

Important (Undecidability proofs by reduction). In the last section, we have used the
same technique in all the proofs. It will be convenient to abstract away this technique
and give it a name. Fix some alphabet Σ. Let L and K be two languages. We say that L
reduces to K, written L ≤ K, if we are able to do the following: assume K is decidable
(for the sake of argument), and then show that L is decidable by using the decider for K
as a black-box subroutine (i.e. a helper function). Here the languages L and K may or
may not be decidable to begin with. But observe that if L ≤ K and K is decidable, then
L is also decidable. Or in other words, if L ≤ K and K ∈ R, then L ∈ R. Equivalently,
taking the contrapositive, if L ≤ K and L is undecidable, then K is also undecidable. So
when L ≤ K, we think of K as being at least as hard as L with respect to decidability (or
that L is no harder than K), which justifies using the less-than-or-equal-to sign.

Even though in the diagram above we have drawn one instance of MK being called
within ML, ML is allowed to call MK multiple times with different inputs.

Remark (Turing reductions). In the literature, the above idea is formalized using the
notion of a Turing reduction (with the corresponding symbol ≤T). In order to define it
formally, we need to define Turing machines that have access to an oracle. See Section
(Bonus: Oracle Turing Machines) for details.

The proofs of Theorem (SATM is undecidable), Theorem (ACCEPTSTM is undecidable),
and Theorem (HALTSTM is undecidable) correspond to

SATM ≤ SATM,

SATM ≤ ACCEPTSTM,

ACCEPTSTM ≤ HALTSTM.

Note (Mapping reductions). Many reductions L ≤ K have the following very special
structure. The TM ML is such that on input x, it first transforms x into a new string
y = f(x) by applying some computable transformation f . Then f(x) is fed into MK .
The output of ML is the same as the output of MK . In other words ML(x) = MK(f(x)).

These special kinds of reductions are called mapping reductions (or many-one reductions),
with the corresponding notation L ≤m K. Note that the reduction we have seen from
SATM to ACCEPTSTM is a mapping reduction. However, the reduction from SATM to
SATM is not a mapping reduction because the output ofMK is flipped, or in other words,
we have ML(x) = not MK(f(x)).

Almost all the reductions in this section will be mapping reductions.

6

CMU CS251 Fall 2022

Note that to specify a mapping reduction from L to K, all one needs to do is specify
a TM Mf that computes f : Σ∗ → Σ∗ with the property that for any x ∈ Σ∗, x ∈ L if and
only if f(x) ∈ K.

Definition (More languages related to encodings of TMs). A TM M is satisfiable if there
is some input string that M accepts. In other words, M is satisfiable if L(M) 6= ∅. We
now define the following languages:

SATTM = {〈M〉 : M is a satisfiable TM},
NEQTM = {〈M1,M2〉 : M1 and M2 are TMs with L(M1) 6= L(M2)},

HALTS− EMPTYTM = {〈M〉 : M is a TM such that M(ε) halts},
FINITETM = {〈M〉 : M is a TM such that L(M) is finite}.

Theorem (SATTM is undecidable). The language SATTM is undecidable.

Proof. We want to show that SATTM is undecidable. We will do so by reducing a known
undecidable language to SATTM. In particular, we will show that ACCEPTSTM ≤
SATTM. To carry out this reduction, assume SATTM is decidable and let MSAT be a de-
cider for it. Using this decider, we will construct a decider for ACCEPTSTM to establish
the reduction.

We construct a TM that decides ACCEPTSTM as follows.

def MACCEPTS(〈TM M, string x〉) :

1. Construct the following string, which we call 〈M ′〉.
2. "def M ′(y):

3. Run M(x).

4. If it accepts, accept.

5. If it rejects, reject."

6. Run MSAT(〈M ′〉).
7. If it accepts, accept.

8. If it rejects, reject.

We now argue that this machine indeed decides ACCEPTSTM. To do this, we’ll show
that no matter what input is given to our machine, it always gives the correct answer.

First let’s assume we get an input 〈M,x〉 such that 〈M,x〉 ∈ ACCEPTSTM, i.e. x ∈
L(M). Then observe that L(M ′) = Σ∗, because for any input y, M ′(y) will accept. When
we runMSAT(〈M ′〉) on line 6, it accepts, and so our machine accepts and gives the correct
answer.

Now assume that we get an input 〈M,x〉 such that 〈M,x〉 6∈ ACCEPTSTM, i.e. x 6∈
L(M). Then either M(x) rejects, or loops forever. If it rejects, then M ′(y) rejects for any
y. If it loops forever, then M ′(y) gets stuck on line 3 for any y. In both cases, L(M ′) = ∅.

7

CMU CS251 Fall 2022

When we run MSAT(〈M ′〉) on line 6, it rejects, and so our machine rejects and gives the
correct answer.

Our machine always gives the correct answer, so we are done.

Remark (Creating an encoding of a machine vs running it). In the proof above, we have
defined the decider MACCEPTS in which we create the encoding of the machine M ′,
denoted 〈M ′〉. Note that creating 〈M ′〉 (which is simply creating a string) is very dif-
ferent from actually running the machine M ′. In particular, even if M(x) loops forever,
MACCEPTS(〈M,x〉) does not loop forever because

(i) MACCEPTS does not run M ′, and

(ii) MSAT is assumed to be a decider, which means it always halts.

Theorem (NEQTM is undecidable). The language NEQTM is undecidable.

Proof. We want to show that NEQTM is undecidable and we will do so by reducing
SATTM (which we know is undecidable) to NEQTM. To carry out this reduction, as-
sume NEQTM is decidable and let MNEQ be a decider for it. Using this decider, we will
construct a decider for SATTM to establish the reduction. The construction is as follows.

def MSAT(〈TM M〉) :

1. Construct string 〈M ′〉 where M ′ is a TM that rejects every input.

2. Run MNEQ(〈M,M ′〉).
3. If it accepts, accept.

4. If it rejects, reject.

It is not difficult to see that this machine indeed decides SATTM. Notice that L(M ′) =
∅. So when we run MNEQ(〈M,M ′〉) on line 2, we are deciding whether L(M) = L(M ′),
which means we are deciding whether L(M) = ∅.

In more detail, if M is such that 〈M〉 ∈ SATTM, then L(M) 6= ∅. Then on line 2,
MNEQ accepts, and therefore MSAT accepts, giving the correct output. If on the other
hand M is such that 〈M〉 6∈ SATTM, then L(M) = ∅. In this case MNEQ on line 2 rejects,
and therefore MSAT rejects as well, which is again the correct output.

Exercise (Practice with undecidability proofs). Show that the following languages are
undecidable.

1. HALTS− EMPTYTM = {〈M〉 : M is a TM and M(ε) halts}

2. FINITETM = {〈M〉 : M is a TM that accepts finitely many strings}
Solution. Part 1: We want to show HALTS− EMPTYTM is undecidable. We will reduce
HALTSTM to HALTS− EMPTYTM. So assume HALTS− EMPTYTM is decidable and
let MHALTS−EMPTY be a decider for it. We construct a decider for HALTSTM as follows.

def MHALTS(〈TM M, string x〉) :

1. Construct the following string, which we call 〈M ′〉.
2. "def M ′(y):

3. Run M(x).

4. Ignore the output and accept."

5. Run MHALTS−EMPTY(〈M ′〉).
6. If it accepts, accept.

7. If it rejects, reject.

8

CMU CS251 Fall 2022

To see that this is a correct decider for HALTSTM, first consider any input 〈M,x〉
such that 〈M,x〉 ∈ HALTSTM, i.e., M(x) halts. By the construction of M ′, this implies
that M ′(y) halts (and accepts) for any string y. So MHALTS−EMPTY(〈M ′〉) accepts, and
our decider above accepts as well. So in this case, the decider gives the correct answer.

Now consider any input 〈M,x〉 such that 〈M,x〉 6∈ HALTSTM, i.e., M(x) loops. Then
for any input y, M ′(y) would get stuck on line 3, and would never halt. This means
MHALTS−EMPTY(〈M ′〉) rejects, and our decider rejects as well, as desired.

For any input, our decider gives the correct answer, and the proof is complete.

Part 2: Our goal is to show that FINITETM is undecidable. For this, we will reduce
HALTSTM to FINITETM. We assume FINITETM is decidable, so let MFINITE be a de-
cider for it. Here is the description of a decider for HALTSTM.

def MHALTS(〈TM M, string x〉) :

1. Construct the following string, which we call 〈M ′〉.
2. "def M ′(y):

3. Run M(x).

4. Ignore the output and accept."

5. Run MFINITE(〈M ′〉).
6. If it accepts, reject.

7. If it rejects, accept.

To see that this is a correct decider for HALTSTM, first consider any input 〈M,x〉
such that 〈M,x〉 ∈ HALTSTM, i.e., M(x) halts. By the construction of M ′, this im-
plies that M ′(y) accepts for any string y. So L(M ′) = Σ∗ (an infinite set), and there-
fore MFINITE(〈M ′〉) rejects. In this case, our decider for HALTSTM accepts and gives the
correct answer.

Now consider any input 〈M,x〉 such that 〈M,x〉 6∈ HALTSTM, i.e., M(x) loops. Then
for any input y, M ′(y) would get stuck on line 3, and would never halt. So L(M ′) = ∅ (a
finite set), and therefore MFINITE(〈M ′〉) accepts. In this case, our decider for HALTSTM

rejects and gives the correct answer.
For any input, our decider gives the correct answer, and the proof is complete. �

Theorem (SATTM ≤ HALTSTM). SATTM ≤ HALTSTM.

Proof. We want to show that deciding SATTM reduces to deciding HALTSTM. For this,
we assume HALTSTM is decidable. Let MHALTS be a decider for HALTSTM. Using it,
we need to construct a decider MSAT for SATTM.

The main idea in the construction of MSAT is as follows. Given as input 〈M〉, we
want to define the description of another TM M ′ so that M is satisfiable (i.e. there exists
x such that M(x) accepts) if and only if M ′ halts (regardless of what the input is). The
idea behind the definition of M ′ is to do an exhaustive search, going through every
possible input string y, in order to find one y that M accepts. If we can define such an
M ′, then indeed, M is satisfiable if and only if M ′ halts. That being said, we have to be
careful about how M ′ is defined. In particular, we have to be careful that M ′ does not
get stuck in a loop even though there is some y that M accepts. With this in mind, we
construct MSAT as follows.

9

CMU CS251 Fall 2022

def MSAT(〈TM M〉) :

1. Construct the following string, which we call 〈M ′〉.
2. "def M ′(x):

3. For t = 1, 2, 3, . . . :

4. For each string y with |y| ≤ t:
5. Simulate M(y) for at most t steps.

6. If it accepts, accept."

7. Run MHALTS(〈M ′, ε〉).
8. If it accepts, accept.

9. If it rejects, reject.

We now argue that this machine indeed decides SATTM. First consider an input
〈M〉 such that 〈M〉 ∈ SATTM. This means that there is some word y such that M(y)
accepts. Note that M ′, by construction, does an exhaustive search, so if such a y exists,
then M ′ will eventually find it, and accept. So M ′(x) halts for any x. When we run
MHALTS(〈M ′, ε〉), it accepts, and our machine accepts, giving the correct answer.

Now consider an input 〈M〉 such that 〈M〉 6∈ SATTM. This means L(M) = ∅. Ob-
serve that the only way M ′ halts is if M(y) accepts for some string y. Since L(M) = ∅,
M ′(x) loops forever for any string x. This means that when we run MHALTS(〈M ′, ε〉), it
rejects, and so our decider above rejects, as desired.

Exercise (SATTM is in RE). Describe a TM that semi-decides SATTM. Proof of correctness
is not required.

Solution.

def MSAT(〈TM M〉) :

1. For t = 1, 2, 3, . . . :

2. For each string y with |y| ≤ t:
3. Simulate M(y) for at most t steps.

4. If it accepts, accept.

�

Exercise (Practice with reduction definition). Let L,K ⊆ {0, 1}∗ be languages. Prove or
disprove the following claims.

1. If L ≤ K then K ≤ L.

2. If L ≤ K and K is regular, then L is regular.

Solution. Part 1: The claim is false. Let L be any decidable language. For example, we
can take L = ∅. The decider for L is a machine that rejects no matter what the input is.
Let K = HALTSTM. Then to establish L ≤ K, we need to argue that given a decider
for HALTSTM, we can decide ∅. Since ∅ is decidable, this is true (and we don’t even
need to make use of a decider for HALTSTM). On the other hand, it is not true that
HALTSTM ≤ ∅. For the sake of contradiction, if it was true, then this would mean that
using a decider for ∅, we can decide HALTSTM. And this would imply that HALTSTM

is decidable, a contradiction.
Part 2: The claim is false. Consider L = {0n1n : n ∈ N} and K = ∅. We have L ≤ K
because L is a decidable language (we don’t even need to make use of the decider for
K). Furthermore, K is regular, but L is not. �

10

CMU CS251 Fall 2022

Exercise (Calling the helper function more than once). In all the reductions L ≤ K
presented in this chapter, the TM ML calls the TM MK exactly once. (And in fact, al-
most all the reductions in this chapter are mapping reductions). Present a reduction
from HALTSTM to ACCEPTSTM in which MHALTS calls MACCEPTS twice, and both
calls/outputs are used in a meaningful way.

Solution. We are assuming ACCEPTSTM is decidable. Let MACCEPTS be a decider for
it. Based on this assumption, we will show that HALTSTM is decidable. Here is the
description of a decider solving HALTSTM:

def MHALTS(〈TM M, string x〉) :

1. Run MACCEPTS(〈M,x〉).
2. If it accepts, accept.

3. Construct string 〈M ′〉 by flipping the accept and reject states of 〈M〉.
4. Run MACCEPTS(〈M ′, x〉).
5. If it accepts, accept.

6. If it rejects, reject.

Or equivalently, as a diagram:

Let’s now prove that this is indeed a correct decider for HALTSTM. To do this, we’ll
show that no matter what input is, the machine always gives the correct answer.

First let’s assume we get any input 〈M,x〉 such that 〈M,x〉 ∈ HALTSTM. In this
case our machine is supposed to accept. Since M(x) halts, we know that M(x) either
ends up in the accepting state, or it ends up in the rejecting state. If it ends up in the
accepting state, thenMACCEPTS(〈M,x〉) accepts (on line 1 of our machine’s description),
and so our program accepts and gives the correct answer on line 2. If on the other hand,
M(x) ends up in the rejecting state, then M ′(x) ends up in the accepting state. Therefore
MACCEPTS(〈M ′, x〉) accepts (on line 4 of our machine’s description), and so our program
accepts and gives the correct answer on line 5.

Now let’s assume we get any input 〈M,x〉 such that 〈M,x〉 6∈ HALTSTM. In this
case our machine is supposed to reject. Since M(x) does not halt, it never reaches the
accepting or the rejecting state. By the construction of M ′, this also implies that M ′(x)
never reaches the accepting or the rejecting state. Therefore first MACCEPTS(〈M,x〉) (on
line 1 of our machine’s description) will reject. And then MACCEPTS(〈M ′, x〉) (on line 4
of our machine’s description) will reject. Thus our program will reject as well, and give
the correct answer on line 6. �

5 Non-Semi-Decidable Languages

We have already proved that SATM is not semi-decidable directly by diagonalization.
We can show that other languages are not semi-decidable by making use of Theorem
(??).

11

CMU CS251 Fall 2022

Theorem (Non-semi-decidability through semi-decidable undecidable languages). If a
language L is semi-decidable but undecidable, then L is not semi-decidable. In other words, if
L ∈ RE \ R, then L 6∈ RE.

Proof. We know L is semi-decidable. If (for the sake of contradiction) L is semi-decidable
as well, then by Theorem (??), L would be decidable, which contradicts our assumption
that it is undecidable.

Corollary (Non-semi-decidable languages). The languages SATM, ACCEPTSTM, and HALTSTM

are not semi-decidable, i.e. they are not in RE.

Proof. The languages SATM, ACCEPTSTM, and HALTSTM are all semi-decidable (i.e.
are in RE), but are not decidable (i.e. are not in R). So the statement of the corollary
follows from the previous theorem.

Note (Comparing REG, R, and RE). The relationship among the complexity classes REG,
R, and RE and can be summarized as follows.

• REG (R since {0n1n : n ∈ N} is not regular but is decidable.

• There are languages like SATM, ACCEPTSTM, HALTSTM, SATTM that are unde-
cidable (not in R), but are semi-decidable (in RE).

• The complements of the languages above are not in RE.

6 Bonus: Oracle Turing Machines

Definition (Oracle Turing machines). Given some decision problem g : Σ∗ → {0, 1}, we
define a g-oracle Turing machine (or simply g-OTM, or just OTM if g is understood from
the context) as a Turing machine with an additional oracle instruction which can be used
in the TM’s high-level description. The additional instruction has the following form.
For any string x and any variable name y of our choosing, we are allowed to use

y = g(x).

After this instruction, the variable y holds the value g(x) and can be used in the rest of
the Turing machine’s description. In this context, the function g is called an oracle.

We’ll use a superscript of g (e.g. Mg) to indicate that a machine is a g-OTM.
Similar to TMs, we write Mg(x) = 1 if the oracle TM Mg , on input x, accepts. We

write Mg(x) = 0 if it rejects. And we write Mg(x) =∞ if it loops forever.
If f : Σ∗ → {0, 1} is a decision problem such that for all x ∈ Σ∗, Mg(x) = f(x), then

we say Mg describes f (and the language corresponding to f).

12

CMU CS251 Fall 2022

Example. Let h : Σ∗ → {0, 1} denote the decision problem corresponding to HALTSTM.
Here is a description of an h-oracle Turing machine.

def Mh(〈TM M, string x〉) :

1. y = h(〈M,x〉)
2. If y = 1:

3. Run M(x).

4. If it accepts, accept.

5. If it rejects, reject.

6. Else: reject.

Note that Mh describes the language ACCEPTSTM.

Remark (Low-level definition of oracle TMs). One can give a precise low-level definition
for an oracle TM, however, we will not need or use that level of detail, so we choose to
omit it.

Definition (Turing reduction). Let L and K be two languages, and let k be the decision
problem corresponding to K. We say that L Turing-reduces to K, written L ≤T K, if
there is an oracle Turing machine Mk describing L.

Note (Turing reductions and decidability). Observe that if L ≤T K and K is decidable,
then L is decidable. This is because if L ≤T K, then by definition, there is an oracle
Turing machine Mk that describes L. If K is decidable, there is a TM MK deciding K.
Then inMk, if we replace all calls to the oracle k withMK , we end up with a TM deciding
L.

It follows (taking the contrapositive of the observation) that if L ≤T K and L is
undecidable, then K is undecidable.

Important (TMs as a description model). As we have already seen, the set of all lan-
guages, ℘(Σ∗), is not encodable. Most languages do not have a finite description. In
addition to thinking about the TM model as a computational model, it is useful to also
think of it as a finite description model: Every TM finitely describes/defines the language
that it decides (or semi-decides).

The TM model is not a comprehensive finite description model. There are many
finitely describable languages (e.g., SATM, ACCEPTSTM, HALTSTM) that a TM cannot
finitely describe. The oracle TM model extends the reach of the TM model as a finite
description model.

If we inspect the proof of Theorem (Turing’s 1st Undecidability Theorem), we can
see that we never really made use of the fact that TMs represent a computational model.
The crucial part of the argument was that the set of TMs is encodable/countable. Or
in other words, we only needed that the TM model is a finite description model for
languages/decision problems. This means that for other finite description models, like
the oracle TM model, we can carry out the same argument.

An important lesson here is that the main limitation Theorem (Turing’s 1st Undecid-
ability Theorem) highlights about TMs is not that they form a computing model, but that
they form a finite description model.

Note (Languages involving encodings of oracle TMs). Fix an oracle g. Then we can
define the languages ACCEPTSOTM, HALTSOTM, SAOTM, and so on, analogous to how
they are defined for TMs. For example,

HALTSOTM = {〈Mg, x〉 : Mg is a g-OTM which halts on input x}.

Theorem (Limits of oracle Turing machines). Fix an oracle g. Then there is no oracle Turing
machine that describes SAOTM.

13

CMU CS251 Fall 2022

Proof. The proof is exactly the same as the proof of Theorem (Turing’s 1st Undecidability
Theorem). Note that the set of all g-oracle Turing machines is encodable/countable.
Therefore we can diagonalize against the set of all g-oracle TMs. The natural diagonal
element that the diagonalization spits out is SAOTM.

7 Check Your Understanding

Problem. 1. State 4 languages that are undecidable.

2. State an undecidable language whose description does not involve Turing ma-
chines.

3. Describe 3 languages that are not semi-decidable.

4. Describe how one can show that a language is undecidable using the notion of a
reduction.

5. True or false: For languages K and L, if K ≤ L, then L is undecidable.

6. True or false: For languages K and L, if K ≤ L and L ≤ K, then L and K are both
decidable.

7. True or false: Fix some alphabet Σ. The set of regular languages over Σ is count-
able.

8. True or false: Fix an alphabet Σ. The set of undecidable languages is countable.

9. True or false: Fix an alphabet Σ. The set of decidable languages is infinite.

10. True or false: If languages K and L are both undecidable, then their union is also
undecidable.

11. True or false: If a language L is undecidable, then L is infinite.

12. True or false: Σ∗ ≤ ∅.

13. True or false: HALTSTM ≤ Σ∗.

14. True or false: Every decidable language reduces to HALTSTM.

15. True or false: For all unary languages L (i.e. languages over the alphabet Σ = {1}),
L is decidable.

16. In a previous chapter, we saw that the language SATDFA is decidable. In particular,
we saw that given the encoding of a DFAD, we can determine ifD accepts a string
by checking if in the state diagram of D, there is a directed path from the initial
state to one of the accepting states.

In this chapter, we saw that the language SATTM is undecidable. Show that the
strategy above that we used for DFAs does not apply to TMs by drawing the state
diagram of a TM M with L(M) = ∅, but there is a path from the starting state to
the accepting state.

8 High-Order Bits

Important. Here are the important things to keep in mind from this chapter.

1. The existence of undecidable languages follows by a counting argument: The set of
all languages is uncountable whereas the set of decidable languages is countable.
This shows that almost all languages are undecidable, however, it does not give us
an explicit undecidable language.

14

CMU CS251 Fall 2022

2. We can use diagonalization to come up with an explicit language that is undecid-
able.

3. Reductions are very important. We have seen in an earlier chapter that reductions
can be used to expand the landscape of decidable languages. In this chapter, you
see that it can be used to expand the landscape of undecidable languages.

4. This chapter has many examples of undecidability proofs. It is easy to fall in the
trap of trying to memorize the template of such proofs rather than really under-
standing the logic behind how and why these proofs work. If you struggle to
understand these proofs, it is usually a sign that there are gaps in your knowledge
from previous chapters. Come talk to us so we can help you identify those gaps.

15

	Existence of Undecidable Languages
	An Explicit Undecidable Language
	More Undecidable Languages
	Undecidability Proofs by Reductions
	Non-Semi-Decidable Languages
	Bonus: Oracle Turing Machines
	Check Your Understanding
	High-Order Bits

