
Time Complexity

1 Big-O, Big-Omega and Theta

Definition (Big-O). For f : R+ → R+ and g : R+ → R+, we write f(n) = O(g(n)) if
there exist constants C > 0 and n0 > 0 such that for all n ≥ n0,

f(n) ≤ Cg(n).

In this case, we say that f(n) is big-O of g(n).

Exercise (Practice with big-O). Show that 3n2 + 10n+ 30 is O(n2).

Solution. Proof 1: To show that 3n2 + 10n+ 30 is O(n2), we need to show that there exists
C > 0 and n0 > 0 such that

3n2 + 10n+ 30 ≤ Cn2

for all n ≥ n0. Pick C = 4 and n0 = 13. Note that for n ≥ 13, we have

10n+ 30 ≤ 10n+ 3n = 13n ≤ n2.

This implies that for n ≥ 13 and C = 4,

3n2 + 10n+ 30 ≤ 3n2 + n2 = Cn2.

Proof 2: Pick C = 43 and n0 = 1. Then for n ≥ 1 = n0, we have

3n2 + 10n+ 30 ≤ 3n2 + 10n2 + 30n2 = 43n2 = Cn2.

�
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Exercise (Logarithms vs polynomials). Using the fact that for all m > 0, logm < m,
show that for all ε > 0 and k > 0, logk n is O(nε).

Solution. For this proof, we will use the fact that for all m > 0, logm < m with m = nε/k.
So

log(nε/k) < nε/k.

Note that log(nε/k) = ε
k log n, and rearranging the terms in the inequality above, we get

log n ≤ k

ε
· nε/k.

Taking the k’th power of both sides gives us, for all n > 0 and C =
(
k
ε

)k
,

logk n < Cnε.

�

Definition (Big-Omega). For f : R+ → R+ and g : R+ → R+, we write f(n) = Ω(g(n))
if there exist constants c > 0 and n0 > 0 such that for all n ≥ n0,

f(n) ≥ cg(n).

In this case, we say that f(n) is big-Omega of g(n).

Exercise (Practice with big-Omega). Show that n!2 is Ω(nn).

Solution. To show (n!)2 = Ω(nn), we’ll show that choosing c = 1 and n0 = 1 satisfies the
definition of Big-Omega. To see this, note that for n ≥ 1, we have:

(n!)2 = ((n)(n− 1) · · · (1)) ((n)(n− 1) · · · (1)) (by definition)
= (n)(1)(n− 1)(2) · · · (1)(n) (re-ordering terms)
= ((n)(1))((n− 1)(2)) · · · ((1)(n)) (pairing up consecutive terms)
≥ (n)(n) · · · (n) (by the Claim below)
= nn.

Claim: For n ≥ 1 and for i ∈ {0, 1, . . . , n− 1},

(n− i)(i+ 1) ≥ n.

Proof: The proof follows from the following chain of implications.

n− (n− 1)− 1 = 0 =⇒ n− i− 1 ≥ 0 (since i ≤ n− 1)
=⇒ i(n− i− 1) ≥ 0 (since i ≥ 0)

=⇒ ni− i2 − i ≥ 0

=⇒ ni− i2 − i+ n ≥ n
=⇒ (n− i)(i+ 1) ≥ n.

This completes the proof. �

Definition (Theta). For f : R+ → R+ and g : R+ → R+, we write f(n) = Θ(g(n)) if

f(n) = O(g(n)) and f(n) = Ω(g(n)).

This is equivalent to saying that there exists constants c, C, n0 > 0 such that for all n ≥ n0,

cg(n) ≤ f(n) ≤ Cg(n).

In this case, we say that f(n) is Theta of g(n).1

1The reason we don’t call it big-Theta is that there is no separate notion of little-theta, whereas little-o o(·)
and little-omega ω(·) have meanings separate from big-O and big-Omega. We don’t cover little-o and little-
omega in this course.
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Proposition (Logarithms in different bases). For any constant b > 1,

logb n = Θ(log n).

Proof. It is well known that logb n = loga n
loga b

. In particular logb n = log2 n
log2 b

. Then taking
c = C = 1

log2 b
and n0 = 1, we see that c log2 n ≤ logb n ≤ C log2 n for all n ≥ n0.

Therefore logb n = Θ(log2 n).

Note (Does the base of a logarithm matter?). Since the base of a logarithm only changes
the value of the log function by a constant factor, it is usually not relevant in big-O, big-
Omega or Theta notation. So most of the time, when you see a log function present inside
O(·), Ω(·), or Θ(·), the base will be ignored. E.g. instead of writing lnn = Θ(log2 n), we
actually write lnn = Θ(log n). That being said, if the log appears in the exponent, the
base matters. For example, nlog2 5 is asymptotically different from nlog3 5.

Exercise (Practice with Theta). Show that log2(n!) = Θ(n log n).

Solution. We first show log2 n! = O(n log n). Observe that

n! = n · (n− 1) · (n− 2) · · · · · 2 · 1 ≤ n · n · n · · · · · n︸ ︷︷ ︸
n times

= nn,

as each term on the RHS (i.e. n) is greater than or equal to each term on the LHS. Taking
the log of both sides gives us log2 n! ≤ log2 n

n = n log2 n (here, we are using the fact
that log ab = b log a). Therefore taking n0 = C = 1 satisfies the definition of big-O, and
log2 n! = O(n log n).

Now we show log2 n! = Ω(n log n). Assume without loss of generality that n is even.
In the definition of n!, we’ll use the first n/2 terms in the product to lower bound it:

n! = n · (n− 1) · (n− 2) · · · · · 2 · 1 ≥ n

2
· n

2
· · · · · n

2︸ ︷︷ ︸
n/2 times

=
(n

2

)n
2

.

Taking the log of both sides gives us log2 n! ≥ n
2 log2

n
2 .

Claim: For n ≥ 4, n2 log2
n
2 ≥

n
4 log2 n.

The proof of the claim is not difficult (some algebraic manipulation) and is left for
the reader. Using the claim, we know that for n ≥ 4, log2 n! ≥ n

4 log2 n. Therefore, taking
n0 = 4 and c = 1/4 satisfies the definition of big-Omega, and log2 n! = Ω(n log n). �

2 Worst-Case Running Time of Algorithms

Definition (Worst-case running time of an algorithm). Suppose we are using some com-
putational model in which what constitutes a step in an algorithm is understood. Sup-
pose also that for any input x, we have an explicit definition of its length. The worst-case
running time of an algorithm A is a function TA : N→ N defined by

TA(n) = max
instances/inputs x

of length n

number of steps A takes on input x.

We drop the subscript A and just write T (n) when A is clear from the context.

Important (Input length). We use n to denote the input length. Unless specified other-
wise, n is defined to be the number of bits in a reasonable binary encoding of the input.
It is also common to define n in other ways. For example, if the input is an array or a list,
n can denote the number of elements.
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Important (Our model when measuring running time). In the Turing machine model, a
step in the computation corresponds to one application of the transition function of the
machine. However, when measuring running time, often we will not be considering the
Turing machine model.

If we don’t specify a particular computational model, by default, our model will be
closely related to the Random Access Machine (RAM) model. Compared to TMs, this
model aligns better with the architecture of the computers we use today. We will not
define this model formally, but instead point out two properties of importance.

First, given a string or an array, accessing any index counts as 1 step.
Second, arithmetic operations count as 1 step as long as the numbers involved are

“small”. We say that a number y is small if it can be upper bounded by a polynomial in
n, the input length. That is, y is small if there is some constant k such that y is O(nk). As
an example, suppose we have an algorithm A that contains a line like x = y+ z, where y
and z are variables that hold integer values. Then we can count this line as a single step
if y and z are both small. Note that whether a number is small or not is determined by
the length of the input to the algorithm A.

We say that a number is large, if it is not small, i.e., if it cannot be upper bounded by
a polynomial in n. In cases where we are doing arithmetic operations involving large
numbers, we have to consider the algorithms used for the arithmetic operations and
figure out their running time. For example, in the line x = y+z, if y or z is a large number,
we need to specify what algorithm is being used to do the addition and what its running
time is. A large number should be treated as a string of digits/characters. Arithmetic
operations on large numbers should be treated as string manipulation operations and
their running time should be figured out accordingly.

Note (Asymptotic complexity). The expression of the running time of an algorithm us-
ing big-O, big-Omega or Theta notation is referred to as asymptotic complexity estimate of
the algorithm.

Definition (Names for common growth rates).

Constant time: T (n) = O(1).

Logarithmic time: T (n) = O(log n).

Linear time: T (n) = O(n).

Quadratic time: T (n) = O(n2).

Polynomial time: T (n) = O(nk) for some constant k > 0.

Exponential time: T (n) = O(2n
k

) for some constant k > 0.

Definition (Complexity class P). We denote by P the set of all languages that can be
decided in polynomial-time, i.e., in time O(nk) for some constant k > 0.

Exercise (Composing polynomial time algorithms). Suppose that we have an algorithm
A that runs another algorithm A′ once as a subroutine. We know that the running time
of A′ is O(nk), k ≥ 1, and the work done by A is O(nt), t ≥ 1, if we ignore the subroutine
A′ (i.e., we don’t count the steps taken by A′). What kind of upper bound can we give
for the total running-time of A (which includes the work done by A′)?

Solution. Let n be the length of the input to algorithm A. The total work done by A is
f(n) + g(n), where g(n) is the work done by the subroutine A′ and f(n) = O(nt) is the
work done ignoring the subroutine A′.

We analyze g(n) as follows. Note that in time O(nt), A can produce a string of length
cnt (for some constant c), and feed this string to A′. The running time of A′ is O(mk),
where m is the length of the input for A′. When A is run and calls A′, the length of
the input to A′ can be m = cnt. Therefore, the work done by A′ inside A is O(mk) =
O((cnt)k) = O(ckntk) = O(ntk).

Since f(n) = O(nt) and g(n) = O(ntk), we have f(n) + g(n) = O(ntk). �
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Note (Intrinsic complexity). The intrinsic complexity of a computational problem refers to
the asymptotic time complexity of the most efficient algorithm that computes the prob-
lem.2

Proposition (Intrinsic complexity of {0k1k : k ∈ N}). The intrinsic complexity of L =
{0k1k : k ∈ N} is Θ(n).

Proof. We want to show that the intrinsic complexity of L = {0k1k : k ∈ N} is Θ(n). The
proof has two parts. First, we need to argue that the intrinsic complexity is O(n). Then,
we need to argue that the intrinsic complexity is Ω(n).

To show that L has intrinsic complexity O(n), all we need to do is present an algo-
rithm that decides L in time O(n). We leave this as an exercise to the reader.

To show thatL has intrinsic complexity Ω(n), we show that no matter what algorithm
is used to decide L, the number of steps it takes must be at least n. We prove this by
contradiction, so assume that there is some algorithm A that decides L using n− 1 steps
or less. Consider the input x = 0k1k (where n = 2k). Since A uses at most n − 1 steps,
there is at least one index j with the property that A does not access x[j]. Let x′ be the
input that is the same as x, except the j’th coordinate is reversed. SinceA does not access
the j’th coordinate, it has no way of distinguishing between x and x′. In other words, A
behaves exactly the same when the input is x or x′. But this contradicts the assumption
that A correctly decides L because A should accept x and reject x′.

Exercise (TM complexity of {0k1k : k ∈ N}). In the TM model, a step corresponds to one
application of the transition function. Show that L = {0k1k : k ∈ N} can be decided
by a TM in time O(n log n). Is this statement directly implied by Proposition (Intrinsic
complexity of {0k1k : k ∈ N})?

Solution. First of all, the statement is not directly implied by Proposition (Intrinsic com-
plexity of {0k1k : k ∈ N}) because that proposition is about the RAM model whereas
this question is about the TM model.

We now sketch the solution. Below is a medium-level description of a TM deciding
the language {0k1k : k ∈ N}.

Scan the tape.

If there is a 0 symbol after a 1 symbol, reject.

Repeat while both 0s and 1s remain on the tape:

Scan the tape.

If (number of 1s + number of 0s) is odd, reject.

Scan the tape.

Cross off every other 0 starting with first 0.

Cross off every other 1 starting with first 1.

If no 0s and no 1s remain accept.

Else, reject.

Let n be the input length. Observe that in each iteration of the loop, we doO(n) work,
and the number of iterations isO(log n) because in each iteration, half of the non-crossed
portion of the input gets crossed off (i.e. in each iteration, the number of 0’s and 1’s is
halved). So the total running time is O(n log n). �

Exercise (Is polynomial time decidability closed under concatenation?). Assume the lan-
guages L1 and L2 are decidable in polynomial time. Prove or give a counter-example:
L1L2 is decidable in polynomial time.

2For certain computational problems, the intrinsic complexity may not be well-defined. In some cases,
there can be a sequence of algorithms that solve a certain computational problem, where each algorithm in the
sequence is asymptotically more efficient than the one before.
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Solution. Let M1 be a decider for L1 with running-time O(nk) and let M2 be a decider
for L2 with running-time O(nt). We construct a polynomial-time decider for L1L2 as
follows:

def M(x) :

1. For each of the |x|+ 1 ways to divide x as yz:

2. Run M1(y).

3. If it accepts:

4. Run M2(z).

5. If it accepts, accept.

6. Reject.

The input length is n = |x|. The for-loop repeats n+ 1 times. In each iteration of the
loop, we do at most cnk + c′nt + c′′ work, where c, c′, c′′ are constants independent of n.
So the total running-time is O(nmax{k,t}+1). �

3 Complexity of Algorithms with Integer Inputs

Important (Integer inputs are large numbers). Given a computational problem with an
integer input x, notice that x is a large number (if x is n bits long, its value can be about
2n, so it cannot be upper bounded by a polynomial in n). Therefore arithmetic operations
involving x cannot be treated as 1-step operations. Computational problems with integer
input(s) are the most common examples in which we have to deal with large numbers,
and in these situations, one should be particularly careful about analyzing running time.

Definition (Integer addition and integer multiplication problems). In the integer addition
problem, we are given two n-bit numbers x and y, and the output is their sum x + y. In
the integer multiplication problem, we are given two n-bit numbers x and y, and the output
is their product xy.

Note (Algorithms for integer addition). Consider the following algorithm for the integer
addition problem (we’ll assume the inputs are natural numbers for simplicity).

def Addition(〈natural x, natural y〉) :

1. For i = 1 to x:

2. y = y + 1.

3. Return y.

This algorithm has a loop that repeats x many times. Since x is an n-bit number, the
worst-case complexity of this algorithm is Ω(2n).

In comparison, the following well-known algorithm for integer addition has time
complexity O(n).

6
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def Addition(〈natural x, natural y〉) :

1. carry = 0.

2. For i = 0 to n− 1:

3. columnSum = x[i] + y[i] + carry.
4. z[i] = columnSum % 2.

5. carry = (columnSum− z[i])/2.
6. z[n] = carry.
7. Return z.

Note that the arithmetic operations inside the loop are all O(1) time since the num-
bers involved are all bounded (i.e., their values do not depend on n). Since the loop
repeats n times, the overall complexity is O(n).

It is easy to see that the intrinsic complexity of integer addition is Ω(n) since it takes
at least n steps to write down the output, which is either n or n + 1 bits long. Therefore
we can conclude that the intrinsic complexity of integer addition is Θ(n). The same is
true for integer subtraction.

Exercise (Running time of the factoring problem). Consider the following problem:
Given as input a positive integer N , output a non-trivial factor3 of N if one exists, and
output False otherwise. Give a lower bound using the Ω(·) notation for the running-time
of the following algorithm solving the problem:

def Non-Trivial-Factor(〈natural N〉) :

1. For i = 2 to N − 1:

2. If N % i == 0: Return i.

3. Return False.

Solution. The input is a number N , so the length of the input is n, which is about log2N .
In other words, N is about 2n. In the worst-case, N is a prime number, which would
force the algorithm to repeat N − 2 times. Therefore the running-time of the algorithm
is Ω(N). Writing N in terms of n, the input length, we get that the running-time is
Ω(2n). �

Note (Grade-school algorithms for multiplication and division). The grade-school algo-
rithms for the integer multiplication and division problems have time complexityO(n2).

Theorem (Karatsuba algorithm for integer multiplication). The integer multiplication prob-
lem can be solved in time O(n1.59).

Proof. Our goal is to present an algorithm with running time O(n1.59) that solves the
integer multiplication problem where the input is two n-bit numbers x and y. For sim-
plicity, we assume that n is a power of 2. The argument can be adapted to handle other
values of n. We first present the algorithm (which is recursive), and then put an upper
bound on its running time complexity.

Let x and y be the input integers, each n bits long. Observe that we can write x as
a · 2n/2 + b, where a is the number corresponding to the left n/2 bits of x and b is the

3A non-trivial factor is a factor that is not equal to 1 or the number itself.
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number corresponding to the right n/2 bits of x. For example, if x = 1011 then a = 10
and b = 11. We can similarly write y as c · 2n/2 + d. Then the product of x and y can be
written as:

x · y = (a · 2n/2 + b)(c · 2n/2 + d)

= ac · 2n + (ad+ bc) · 2n/2 + bd

This implies that we can compute xy by recursively computing the products ac, ad, bc
and bd. Note that multiplying a number by 2n is just putting n 0’s at the end of the
number, so this has cost O(n). Similarly all the addition operations are O(n) time.

Our algorithm is slightly different than the one described above. We will do the cal-
culation with only 3 recursive calls rather than 4. We recursively compute the products
ac, bd and (a− b)(c− d). Observe that (a− b)(c− d)− ac− bd = −(ad+ bc). Now that we
have ac, bd and (ad + bc) at hand, we can compute xy (of course we still have to do the
appropriate addition operations and padding with 0’s). This completes the description
of the algorithm.

Let T (n) be the time complexity of our algorithm. Observe that the recursive relation
that T (n) satisfies is

T (1) = k, T (n) ≤ 3T (n/2) + cn for n > 1,

where k and c are some constants. The base case corresponds to 1-bit integers, which
can be calculated in constant time. In T (n) ≤ 3T (n/2) + cn, the 3T (n/2) comes from
the 3 recursive calls we make to compute the products ac, bd and (a − b)(c − d). The cn
comes from the work we have to do for the addition operations and the padding with
0’s. To solve the recursion, i.e., to figure out the formula for T (n), we draw the associated
recursion tree.

The root (top) of the tree corresponds to the original input with n-digit numbers and
is therefore labeled with an n. This branches off into 3 nodes, one corresponding to each
recursive call. These nodes are labeled with n/2 since they correspond to recursive calls
in which the number of bits is halved. Those nodes further branch off into 3 nodes, and
so on, until at the very bottom, we end up with nodes corresponding to inputs with
n = 1. The work being done for each node of the tree is provided with a label on top
of the node. For example, at the root (top), we do at most cn work before we do our
recursive calls. This is why we put a cn on top of that node. Similarly, every other node
can be labeled, and the total work done by the algorithm is the sum of all the labels.

We now calculate the total work done. We can divide the nodes of the tree into levels
according to how far a node is from the root. So the root corresponds to level 0, the nodes
it branches off to correspond to level 1, and so on. Observe that level j has exactly 3j

nodes. The nodes that are at level j each do cn/2j work. Therefore, the total work done
at level j is cn3j/2j . The last level corresponds to level log2 n. Thus, we have:

T (n) ≤
log2 n∑
j=0

cn(3j/2j) = cn

log2 n∑
j=0

(3j/2j)
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Using the formula for geometric sums, we can say that there is some constant C such
that:

T (n) ≤ Cn(3log2 n/2log2 n) = Cn(nlog2 3/nlog2 2) = Cnlog2 3.

So we conclude that T (n) = O(n1.59).

Remark. The programming language Python uses Karatsuba algorithm for multiplying
large numbers. There are algorithms for multiplying integers that are asymptotically
better than the Karatsuba algorithm.

Exercise (251st root). Consider the following computational problem. Given as input a
number A ∈ N, output bA1/251c. Determine whether this problem can be computed in
worst-case polynomial-time, i.e. O(nk) time for some constant k, where n denotes the
number of bits in the binary representation of the input A. If you think the problem can
be solved in polynomial time, give an algorithm in pseudocode, explain briefly why it
gives the correct answer, and argue carefully why the running time is polynomial. If you
think the problem cannot be solved in polynomial time, then provide a proof.

Solution. First note that the following algorithm, although correct, is exponential time.

def Linear-Search(〈natural A〉) :

1. For B = 0 to A:

2. If B251 > A: Return B − 1.

The length of the input is n, which is about log2A. In other words, A is about 2n. The
for loop above will repeat bA1/251cmany times, so the running-time is Ω(A1/251), and in
terms of n, this is Ω(2n/251).

To turn the above idea into a polynomial-time algorithm, we need to use binary
search instead of linear search.

def Binary-Search(〈natural A〉) :

1. lo = 0.

2. hi = A.

3. While (lo < hi) :

4. B =

⌈
lo + hi

2

⌉
.

5. If B251 > A: hi = B − 1.

6. Else: lo = B.

7. Return lo.

Since we are using binary search, we know that the loop repeats O(logA) times, or
using n as our parameter, O(n) times. All the variables hold values that are at mostA, so
they are at most n-bits long. This means all the arithmetic operations (plus, minus, and
division by 2) in the loop can be done in linear time. ComputingB251 is polynomial-time
because we can compute it by doing integer multiplication a constant number of times,
and the numbers involved in these multiplications are O(n)-bits long. Thus, the total
work done is polynomial in n. �
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4 Check Your Understanding

Problem. 1. What is the formal definition of “f = Ω(g)”?

2. True or false: nlog2 5 = Θ(nlog3 5).

3. True or false: nlog2 n = Ω(n15251).

4. True or false: 3n = Θ(2n).

5. True or false: Suppose f(n) = Θ(g(n)). Then we can find constants c > 0 and
n0 > 0 such that for all n ≥ n0, f(n) = cg(n).

6. True or false: f(n) = O(g(n)) if and only if g(n) = Ω(f(n)).

7. What is the definition of “worst-case running time of an algorithm A”?

8. True or false: Let Σ = {0, 1} and let L = {0n : n ∈ N+}. There is a Turing machine
A deciding L whose running time TA satisfies “TA(n) is O(n)”.

9. True or false: Continuing previous question, every Turing machine B that decides
L has running time TB satisfying “TB(n) is Ω(n)”.

10. True or false: The intrinsic complexity of the integer multiplication problem is
Θ(nlog2 3).

11. True or false: For languages L1 and L2, if L1 ≤ L2 and L2 is polynomial time
decidable, then L1 is polynomial time decidable.

12. Explain under what circumstances we count arithmetic operations as constant-
time operations, and under what circumstances we don’t.

13. Consider the algorithm below. What is n, the input length? Is the algorithm poly-
nomial time?

def isPrime(N):

if (N < 2): return False

if (N == 2): return True

if (N mod 2 == 0): return False

maxFactor = ceiling(N**0.5) # N**0.5 = square root of N

for factor in range(3,maxFactor+1,2):

if (N mod factor == 0): return False

return True

5 High-Order Bits

Important. Here are the important things to keep in mind from this chapter.

1. Both an intuitive and formal understanding of big-O, big-Omega and Theta nota-
tions are important.

2. The definition of “Worst-case running time of an algorithm” is fundamental.

3. Understanding how to analyze the running time of algorithms that involve integer
inputs is one of the main goals of this chapter. The key here is to always keep
in mind that if an algorithm has an integer N as input, the input length n is not
N , but rather the logarithm of N . If you are not careful about this, you can fool
yourself into thinking that exponential time algorithms are actually polynomial
time algorithms.

4. Make sure you understand when arithmetic operations count as constant time op-
erations and when they do not.

5. You should be comfortable solving recurrence relations using the tree method, as il-
lustrated in the proof of Theorem (Karatsuba algorithm for integer multiplication).
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