
Polynomial-Time Reductions

1 Problems of Interest

In this section, we present the definitions of some of the decision problems that will be
part of our discussion in this module.

Definition (k-Coloring problem). In the k-coloring problem, the input is an undirected
graph G = (V,E), and the output is True if and only if the graph is k-colorable (see
Definition (??)). We denote this problem by kCOL. The corresponding language is

{〈G〉 : G is a k-colorable graph}.

Definition (Clique problem). Let G = (V,E) be an undirected graph. A subset S of the
vertices is called a clique if for all u, v ∈ S with u 6= v, {u, v} ∈ E. We say that G contains
a k-clique if there is a subset of the vertices of size k that forms a clique.

In the clique problem, the input is an undirected graph G = (V,E) and a number
k ∈ N+, and the output is True if and only if the graph contains a k-clique. We denote
this problem by CLIQUE. The corresponding language is

{〈G, k〉 : G is a graph, k ∈ N+, G contains a k-clique}.

Definition (Independent set problem). Let G = (V,E) be an undirected graph. A subset
of the vertices is called an independent set if there is no edge between any two vertices in
the subset. We say that G contains an independent set of size k if there is a subset of the
vertices of size k that forms an independent set.

In the independent set problem, the input is an undirected graph G = (V,E) and a
number k ∈ N+, and the output is True if and only if the graph contains an independent
set of size k. We denote this problem by IS. The corresponding language is

{〈G, k〉 : G is a graph, k ∈ N+, G contains an independent set of size k}.

1

CMU CS251 Fall 2022

Note (Unary NOT, binary AND, binary OR). We denote by ¬ the unary NOT operation,
by ∧ the binary AND operation, and by ∨ the binary OR operation. In particular, we can
write the truth tables of these operations as follows:

Definition (Boolean satisfiability problem). Let x1, . . . , xn be Boolean variables, i.e., vari-
ables that can be assigned True or False. A literal refers to a Boolean variable or its nega-
tion. A clause is an “OR” of literals. For example, x1 ∨ ¬x3 ∨ x4 is a clause. A Boolean
formula in conjunctive normal form (CNF) is an “AND” of clauses. For example,

(x1 ∨ ¬x3) ∧ (x2 ∨ x2 ∨ x4) ∧ (x1 ∨ ¬x1 ∨ ¬x5) ∧ x4

is a CNF formula. We say that a Boolean formula is a satisfiable formula if there is a truth
assignment (which can also be viewed as a 0/1 assignment) to the Boolean variables that
makes the formula evaluate to true (or 1).

In the CNF satisfiability problem, the input is a CNF formula, and the output is True if
and only if the formula is satisfiable. We denote this problem by SAT. The corresponding
language is

{〈ϕ〉 : ϕ is a satisfiable CNF formula}.

In a variation of SAT, we restrict the input formula such that every clause has exactly 3
literals (we call such a formula a 3CNF formula). For instance, the following is a 3CNF
formula: For example,

(x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ x2 ∨ x4) ∧ (x1 ∨ ¬x1 ∨ ¬x5) ∧ (¬x2 ∨ ¬x3 ∨ ¬x3)

This variation of the problem is denoted by 3SAT.

Definition (Boolean circuit). A Boolean circuit with n-input variables (n ≥ 0) is a di-
rected acyclic graph with the following properties. Each node of the graph is called a
gate and each directed edge is called a wire. There are 5 types of gates that we can choose
to include in our circuit: AND gates, OR gates, NOT gates, input gates, and constant
gates. There are 2 constant gates, one labeled 0 and one labeled 1. These gates have
in-degree/fan-in1 0. There are n input gates, one corresponding to each input variable.
These gates also have in-degree/fan-in 0. An AND gate corresponds to the binary AND
operation ∧ and an OR gate corresponds to the binary OR operation ∨. These gates have
in-degree/fan-in 2. A NOT gate corresponds to the unary NOT operation ¬, and has
in-degree/fan-in 1. One of the gates in the circuit is labeled as the output gate. Gates can
have out-degree more than 1, except for the output gate, which has out-degree 0.

For each 0/1 assignment to the input variables, the Boolean circuit produces a one-bit
output. The output of the circuit is the output of the gate that is labeled as the output gate.
The output is calculated naturally using the truth tables of the operations corresponding
to the gates. The input-output behavior of the circuit defines a function f : {0, 1}n →
{0, 1} and in this case, we say that f is computed by the circuit.

Example. Below is an example of how we draw a circuit. In this example, n = 4.

1The in-degree of a gate is also known as the fan-in of the gate.

2

CMU CS251 Fall 2022

The output gate is the gate at the very top with an arrow that links to nothing. The circuit
outputs 1 if and only if x1 6= x2 and x3 6= x4.

Definition (Circuit satisfiability problem). A satisfiable circuit is such that there is 0/1
assignment to the input gates that makes the circuit output 1. In the circuit satisfiability
problem, the input is a Boolean circuit, and the output is True if and only if the circuit is
satisfiable. We denote this problem by CIRCUIT− SAT. The corresponding language is

{〈C〉 : C is a Boolean circuit that is satisfiable}.

Note (Names of decision problems and languages). The name of a decision problem
above refers both to the decision problem and the corresponding language.

Note (Inputs of decision problems). Recall that in all the decision problems above, the
input is an arbitrary word in Σ∗. If the input does not correspond to a valid encoding
of an object expected as input (e.g. a graph in the case of kCOL), then those inputs are
rejected (i.e., they are not in the corresponding language).

Note (Exponential-time algorithms for the decision problems above). All the problems
defined above are decidable and have exponential-time algorithms solving them.

2 Cook and Karp Reductions

Note (Cook reduction: Polynomial-time (Turing) reduction). Fix some alphabet Σ. Let
A and B be two languages. We say that A polynomial-time reduces to B, written A ≤P

B, if there is a polynomial-time decider for A that uses a decider for B as a black-box
subroutine.2 Polynomial-time reductions are also known as Cook reductions, named after
Stephen Cook.

Note (Polynomial-time reductions and P). SupposeA ≤P B. Observe that ifB ∈ P, then
A ∈ P. Equivalently, taking the contrapositive, if A 6∈ P, then B 6∈ P. So when A ≤P B,
we think of B as being at least as hard as A with respect to polynomial-time decidability.

Note (Transitivity of Cook reductions). Note that if A ≤P B and B ≤P C, then A ≤P C.

Recall that in a previous chapter, we introduced the concept of a mapping reduction
(see Note (??)) as a special kind of a regular (Turing) reduction. We observed that to
specify a mapping reduction from L to K, one simply needs to define an algorithm
computing a function f : Σ∗ → Σ∗ such that x ∈ L if and only if f(x) ∈ K. Below we
define the notion of a polynomial-time mapping reduction.

2Technically, the black-box decider for B is called an oracle, and every call to the oracle is assumed to take
1 step. In these notes, we omit the formal definition of these reductions that require introducing oracle Turing
machines. This semi-informal treatment is sufficient for our purposes.

3

CMU CS251 Fall 2022

Definition (Karp reduction: Polynomial-time mapping reduction). Let A and B be two
languages. Suppose that there is a polynomial-time computable function (also called a
polynomial-time transformation) f : Σ∗ → Σ∗ such that x ∈ A if and only if f(x) ∈ B.
Then we say that there is a polynomial-time mapping reduction (or a Karp reduction, named
after Richard Karp) from A to B, and denote it by A ≤P

m B.

Important (Steps to establish a Karp reduction). To show that there is a Karp reduction
from A to B, you need to do the following things.

1. Present a computable function f : Σ∗ → Σ∗.

2. Show that x ∈ A =⇒ f(x) ∈ B.

3. Show that x 6∈ A =⇒ f(x) 6∈ B (it is usually easier to argue the contrapositive).

4. Show that f can be computed in polynomial time.

In picture, the transformation f looks as follows.

Note that f need not be injective and it need not be surjective.

Important (Mapping reductions vs Turing reductions). Recall that a mapping reduction
is really a special kind of a Turing reduction. In particular, if there is a mapping reduction
from languageA to languageB, then one can construct a regular (Turing) reduction from
A to B. We explain this below as a reminder.

To establish a Turing reduction from A to B, we need to show how we can come up
with a decider MA for A given that we have a decider MB for B. Now suppose we have
a mapping reduction fromA toB. This means we have a computable function f as in the
definition of a mapping reduction. This f then allows us to build MA as follows. Given
any input x, first feed x into f , and then feed the output y = f(x) into MB . The output
of MA is the output of MB . We illustrate this construction with the following picture.

Take a moment to verify that this reduction from A to B is indeed correct given the
definition of f .

Even though a mapping reduction can be viewed as a regular (Turing) reduction, not
all reductions are mapping reductions.

Theorem (CLIQUE reduces to IS). CLIQUE ≤P
m IS.

Proof. Following the previous important note, we start by presenting a computable func-
tion f : Σ∗ → Σ∗.

4

CMU CS251 Fall 2022

def f(〈graph G = (V,E), positive natural k〉) :

1. E′ = {{u, v} : {u, v} 6∈ E}.
2. Return 〈G′ = (V,E′), k〉.

(In a Karp reduction from A to B, when we define f : Σ∗ → Σ∗, it is standard to
define it so that invalid instances of A are mapped to invalid instances of B. We omit
saying this explicitly when presenting the reduction, but you should be aware that this is
implicitly there in the definition of f . In the above definition of f , for example, any string
x that does not correspond to a valid instance of CLIQUE (i.e., not a valid encoding of a
graph G together with a positive integer k) is mapped to an invalid instance of IS (e.g.
they can be mapped to ε, which we can assume to not be a valid instance of IS.))

To show that f works as desired, we first make a definition. Given a graph G =
(V,E), the complement of G is the graph G′ = (V,E′) where E′ = {{u, v} : {u, v} 6∈ E}.
In other words, we construct G′ by removing all the edges of G and adding all the edges
that were not present in G.

We now argue that x ∈ CLIQUE if and only if f(x) ∈ IS. First, assume x ∈ CLIQUE.
Then x corresponds to a valid encoding 〈G = (V,E), k〉 of a graph and an integer. Fur-
thermore, G contains a clique S ⊆ V of size k. In the complement graph, this S is an
independent set ({u, v} ∈ E for all distinct u, v ∈ S implies {u, v} 6∈ E′ for all distinct
u, v ∈ S). Therefore 〈G′ = (V,E′), k〉 ∈ IS. Conversely, if 〈G′ = (V,E′), k〉 ∈ IS, then G′

contains an independent set S ⊆ V of size k. This set S is a clique in the complement of
G′, which is G. So the pre-image of 〈G′ = (V,E′), k〉 under f , which is 〈G = (V,E), k〉, is
in CLIQUE.

Finally, we argue that the function f can be computed in polynomial time. This is
easy to see since the construction of E′ (and therefore G′) can be done in polynomial
time as there are polynomially many possible edges.

Exercise (IS reduces to CLIQUE). How can you modify the above reduction to show
that IS ≤P

m CLIQUE?

Solution. We can use exactly the same reduction as the one in the reduction from CLIQUE
to IS:

def f(〈graph G = (V,E), positive natural k〉) :

1. E′ = {{u, v} : {u, v} 6∈ E}.
2. Return 〈G′ = (V,E′), k〉.

This reduction establishes IS ≤P
m CLIQUE. The proof of correctness is the same as in

the proof of Theorem (CLIQUE reduces to IS); just interchange the words “clique” and
“independent set” in the proof. �

Exercise (Hamiltonian path reductions). Let G = (V,E) be a graph. A Hamiltonian path
inG is a path that visits every vertex of the graph exactly once. The HAMPATH problem
is the following: given a graphG = (V,E), output True if it contains a Hamiltonian path,
and output False otherwise.

1. LetL = {〈G, k〉 : G is a graph, k ∈ N, G has a path of length k}. Show that HAMPATH ≤P
m

L.

2. LetK = {〈G, k〉 : G is a graph, k ∈ N, G has a spanning tree with ≤ k leaves}. Show
that HAMPATH ≤P

m K.

5

CMU CS251 Fall 2022

Solution. Part (1): We need to show that there is a poly-time computable function f :
Σ∗ → Σ∗ such that x ∈ HAMPATH if and only if f(x) ∈ L. Below we present f .

def f(〈graph G = (V,E)〉) :

1. Return 〈G, |V | − 1〉.

We first prove the correctness of the reduction. If x ∈ HAMPATH, then x corresponds
to an encoding of a graph G that contains a Hamiltonian path. Let n be the number of
vertices in the graph. A Hamiltonian path visits every vertex of the graph exactly once,
so has length n−1 (the length of a path is the number of edges along the path). Therefore,
by the definition of L, we must have f(x) = 〈G,n − 1〉 ∈ L. For the converse, suppose
f(x) ∈ L. Then it must be the case that f(x) = 〈G,n − 1〉, where x = 〈G〉, G is some
graph, and n is the number of vertices in that graph. Furthermore, by the definition of
L, it must be the case that G contains a path of length n − 1. A path cannot repeat any
vertices, so this path must be a path visiting every vertex in the graph, that is, it must be
a Hamiltonian path. So x ∈ HAMPATH.

To see that the reduction is polynomial time, note that the number of vertices in the
given graph can computed in polynomial time. So the function f can be computed in
polynomial time.

Part (2): We need to show that there is a poly-time computable function f : Σ∗ → Σ∗

such that x ∈ HAMPATH if and only if f(x) ∈ K. Below we present f .

def f(〈graph G = (V,E)〉) :

1. Return 〈G, 2〉.

A note: For the correctness proof below, we are going to ignore the edge case where
the graph has 1 vertex. By convention, we don’t allow graphs with 0 vertices.

We now prove the correctness of the reduction. If x ∈ HAMPATH, then x corre-
sponds to an encoding of a graph G that contains a Hamiltonian path. A Hamiltonian
path visits every vertex of the graph, so it forms a spanning tree with 2 leaves. There-
fore, by the definition of K, we must have f(x) = 〈G, 2〉 ∈ K. For the converse, suppose
f(x) ∈ K. Then it must be the case that f(x) = 〈G, 2〉, where x = 〈G〉 and G is some
graph. Furthermore, by the definition ofK,Gmust contain a spanning tree with 2 leaves
(recall that every tree with at least 2 vertices must contain at least 2 leaves). A tree with
exactly 2 leaves must be a path (prove this as an exercise). Since this path is a spanning
tree, it must contain all the vertices. Therefore this path is a Hamiltonian path in G. So
x ∈ HAMPATH.

It is clear that the function f can be computed in polynomial time. This completes
the proof. �

The theorem below illustrates how reductions can establish an intimate relationship
between seemingly unrelated problems.

Theorem (CIRCUIT-SAT reduces to 3COL). CIRCUIT− SAT ≤P
m 3COL.

Remark. It is completely normal (and expected) if the proof below seems magical and if
you get the feeling that you could not come up with this reduction yourself. You do not
have to worry about any of the details of the proof (it is completely optional). The point
of this example is to illustrate to you that reductions can be complicated and unintuitive
at first. It is meant to highlight that seemingly unrelated problems can be intimately
connected via very interesting transformations.

Proof. To prove the theorem, we will present a Karp reduction from CIRCUIT− SAT
to 3COL. In particular, given a valid CIRCUIT− SAT instance C, we will construct a

6

CMU CS251 Fall 2022

3COL instanceG such thatC is a satisfiable Boolean circuit if and only ifG is 3-colorable.
Furthermore, the construction will be done in polynomial time.

First, it is generally well-known that any Boolean circuit with AND, OR, and NOT
gates can be converted into an equivalent circuit that only has NAND gates (in addition
to the input gates and constant gates). A NAND gate computes the NOT of AND. The
transformation can easily be done in polynomial time: for each AND, OR and NOT
gate, you just create a little circuit with NAND gates that mimics the behavior of AND,
OR and NOT. So without loss of generality, we assume that our circuit C is a circuit with
NAND gates, input gates and constant gates. We constructG by converting each NAND
gate into the following graph.

The vertices labeled with x and y correspond to the inputs of the NAND gate. The
vertex labeled with ¬(x ∧ y) corresponds to the output of the gate. We construct such
a graph for each NAND gate of the circuit, however, we make sure that if, say, gate g1
is an input to gate g2, then the vertex corresponding to the output of g1 coincides with
(is the same as) the vertex corresponding to one of the inputs of g2. Furthermore, the
vertices labeled with 0, 1 and n are the same for each gate. In other words, in the whole
graph, there is only one vertex labeled with 0, one vertex labeled with 1, and one vertex
labeled with n. Lastly, we put an edge between the vertex corresponding to the output
vertex of the output gate and the vertex labeled with 0. This completes the construction
of the graphG. Before we prove that the reduction is correct, we make some preliminary
observations.

Let’s call the 3 colors we use to color the graph 0, 1 and n (we think of n as “none”).
Any valid coloring of G must assign different colors to 3 vertices that form a triangle
(e.g. vertices labeled with 0, 1 and n). If G is 3-colorable, we can assume without loss
generality that the vertex labeled 0 is colored with the color 0, the vertex labeled 1 is
colored with color 1, and the vertex labeled n is colored with the color n. This is without
loss of generality because if there is a valid coloring of G, any permutation of the colors
corresponds to a valid coloring as well. Therefore, we can permute the colors so that the
labels of those vertices coincide with the colors they are colored with.

Notice that since the vertices corresponding to the inputs of a gate (i.e. the x and y
vertices) are connected to vertex n, they will be assigned the colors 0 or 1. Let’s consider
two cases:

• If x and y are assigned the same color (i.e. either they are both 0 or they are both
1), the vertex labeled with x ∧ y will have to be colored with that same color. That
is, the vertex labeled with x∧ y must get the color corresponding to the evaluation
of x ∧ y. To see this, just notice that the vertices labeled s1 and s2 must be colored

7

CMU CS251 Fall 2022

with the two colors that x and y are not colored with. This forces the vertex x ∧ y
to be colored with the same color as x and y.

• If x and y are assigned different colors (i.e. one is colored with 0 and the other
with 1), the vertex labeled with x ∧ y will have to be colored with 0. That is, as in
the first case, the vertex labeled with x ∧ y must get the color corresponding to the
evaluation of x ∧ y. To see this, just notice that one of the vertices labeled d1 or d2
must be colored with 1. This forces the vertex x ∧ y to be colored with 0 since it is
already connected to vertex n.

In either case, the color of the vertex x ∧ y must correspond to the evaluation of x ∧ y. It
is then easy to see that the color of the vertex ¬(x∧ y) must correspond to the evaluation
of ¬(x ∧ y).

We are now ready to argue that circuit C is satisfiable if and only if G is 3-colorable.
Let’s first assume that the circuit we have is satisfiable. We want to show that the graph
G we constructed is 3-colorable. Since the circuit is satisfiable, there is a 0/1 assignment
to the input variables that makes the circuit evaluate to 1. We claim that we can use this
0/1 assignment to validly color the vertices of G. We start by coloring each vertex that
corresponds to an input variable: In the satisfying truth assignment, if an input variable
is set to 0, we color the corresponding vertex with the color 0, and if an input variable is
set to 1, we color the corresponding vertex with the color 1. As we have argued earlier,
a vertex that corresponds to the output of a gate (the vertex at the very bottom of the
picture above) is forced to be colored with the color that corresponds to the value that
the gate outputs. It is easy to see that the other vertices, i.e., the ones labeled s1, s2, d1, d2
and the unlabeled vertices can be assigned valid colors. Once we color the vertices in this
manner, the vertices corresponding to the inputs and output of a gate will be consistently
colored with the values that it takes as input and the value it outputs. Recall that in the
construction of G, we connected the output vertex of the output gate with the vertex
labeled with 0, which forces it to be assigned the color 1. We know this will indeed
happen since the 0/1 assignment we started with makes the circuit output 1. This shows
that we can obtain a valid 3-coloring of the graph G.

The other direction is very similar. Assume that the constructed graph G has a valid
3-coloring. As we have argued before, we can assume without loss of generality that
the vertices labeled 0, 1, and n are assigned the colors 0, 1, and n respectively. We know
that the vertices corresponding to the inputs of a gate must be assigned the colors 0 or
1 (since they are connected to the vertex labeled n). Again, as argued before, given the
colors of the input vertices of a gate, the output vertex of the gate is forced to be colored
with the value that the gate would output in the circuit. The fact that we can 3-color
the graph means that the output vertex of the output gate is colored with 1 (since it
is connected to vertex 0 and vertex n by construction). This implies that the colors of
the vertices corresponding to the input variables form a 0/1 assignment that makes the
circuit output a 1, i.e. the circuit is satisfiable.

To finish the proof, we must argue that the construction of graph G, given circuit C,
can be done in polynomial time. This is easy to see since for each gate of the circuit, we
create at most a constant number of vertices and a constant number of edges. So if the
circuit has s gates, the construction can be done in O(s) steps.

Exercise (Transitivity of Karp reductions). Show that if A ≤P
m B and B ≤P

m C, then
A ≤P

m C.

Solution. Suppose A ≤P
m B and B ≤P

m C. Let f : Σ∗ → Σ∗ be the map that establishes
A ≤P

m B and let g : Σ∗ → Σ∗ be the map that establishes B ≤P
m C. So x ∈ A if and only if

f(x) ∈ B. And x ∈ B if and only if g(x) ∈ C. Both f and g are computable in polynomial
time.

To show A ≤P
m C, we define h : Σ∗ → Σ∗ such that h = g ◦ f . That is, for all x ∈ Σ∗,

h(x) = g(f(x)). We need to show that

8

CMU CS251 Fall 2022

• x ∈ A if and only if h(x) ∈ C;

• h is computable in polynomial time.

For the first part, note that by the properties of f and g, x ∈ A if and only if f(x) ∈ B if
and only if g(f(x)) ∈ C (i.e., h(x) ∈ C).
(If you are having trouble following this, you can break this part up into two parts:
(i) x ∈ A =⇒ h(x) ∈ C, (ii) x 6∈ A =⇒ h(x) 6∈ C.)
For the second part, if f is computable in time O(nk), k ≥ 1, and g is computable in time
O(nt), t ≥ 1, then h can be computed in time O(nkt). (Why?) �

3 Hardness and Completeness

Definition (C-hard, C-complete). Let C be a set of languages containing P.

• We say thatL is C-hard (with respect to Cook reductions) if for all languagesK ∈ C,
K ≤P L.
(With respect to polynomial time decidability, a C-hard language is at least as
“hard” as any language in C.)

• We say that L is C-complete if L is C-hard and L ∈ C.
(A C-complete language represents the “hardest” language in C with respect to
polynomial time decidability.)

Note (C-completeness and P). Suppose L is C-complete. Then observe that L ∈ P ⇐⇒
C = P.

Note (C-hardness with respect to Cook and Karp reductions). Above we have defined
C-hardness using Cook reductions. In literature, however, they are often defined using
Karp reductions, which actually leads to a different notion of C-hardness. There are good
reasons to use this restricted form of reductions. More advanced courses may explore
some of these reasons.

4 Check Your Understanding

Problem. 1. What is a Cook reduction? What is a Karp reduction? What is the dif-
ference between the two?

2. Explain why every Karp reduction can be viewed as a Cook reduction.

3. Explain why every Cook reduction cannot be viewed as a Karp reduction.

4. True or false: Σ∗ ≤P
m ∅.

5. True or false: For languages A and B, A ≤P
m B if and only if B ≤P

m A.

6. Define the complexity class P.

7. True or false: The language

251CLIQUE = {〈G〉 : G is a graph containing a clique of size 251}

is in P.

8. True or false: Let L,K ⊆ Σ∗ be two languages. Suppose there is a polynomial-
time computable function f : Σ∗ → Σ∗ such that x ∈ L iff f(x) /∈ K. Then L
Cook-reduces to K.

9. True or false: There is a Cook reduction from 3SAT to HALTS.

10. For a complexity class C containing P, define what it means to be C-hard.

11. For a complexity class C containing P, define what it means to be C-complete.

12. Suppose L is C-complete. Then argue why L ∈ P⇐⇒ C = P.

9

CMU CS251 Fall 2022

5 High-Order Bits

Important. 1. There are two very important notions of reductions introduced in this
chapter: Cook reductions and Karp reductions. Make sure you understand the
similarities and differences between them. And make sure you are comfortable
presenting and proving the correctness of reductions. This is the main goal of the
chapter.

2. The chapter concludes with a couple of important definitions: C-hardness, C-completeness.
We present these definitions in this chapter as they are closely related to reductions.
However, we will make use of these definitions in the next chapter after we intro-
duce the complexity class NP. For now, make sure you understand the definitions
and also Note (C-completeness and P).

10

	Problems of Interest
	Cook and Karp Reductions
	Hardness and Completeness
	Check Your Understanding
	High-Order Bits

