
Randomized Algorithms

1 Monte Carlo and Las Vegas Algorithms

Informally, we’ll say that an algorithm is randomized if it has access to a randomness
source. In this course, we’ll assume that a randomized algorithm is allowed to call
RandInt(m), which returns a uniformly random element of {1, 2, . . . ,m}, and Bernoulli(p),
which returns 1 with probability p and returns 0 with probability 1− p. We assume that
both RandInt and Bernoulli take O(1) time to execute. The notion of a randomized algo-
rithm can be formally defined using probabilistic Turing machines, but we will not do so
here.

Definition (Monte Carlo algorithm). Let f : Σ∗ → Σ∗ be a computational problem.
Let 0 ≤ ε < 1 be some parameter and T : N → N be some function. Suppose A is a
randomized algorithm such that

• for all x ∈ Σ∗, Pr[A(x) 6= f(x)] ≤ ε;

• for all x ∈ Σ∗, Pr[number of steps A(x) takes is at most T (|x|)] = 1.

(Note that the probabilities are over the random choices made by A.) Then we say that
A is a T (n)-time Monte Carlo algorithm that computes f with ε probability of error.

Definition (Las Vegas algorithm). Let f : Σ∗ → Σ∗ be a computational problem. Let
T : N→ N be some function. Suppose A is a randomized algorithm such that

• for all x ∈ Σ∗, Pr[A(x) = f(x)] = 1, where the probability is over the random
choices made by A;

• for all x ∈ Σ∗, E[number of steps A(x) takes] ≤ T (|x|).

Then we say that A is a T (n)-time Las Vegas algorithm that computes f .

1

CMU CS251 Fall 2022

Note (Randomized algorithms for optimization problems). One can adapt the defini-
tions above to define the notions of Monte Carlo algorithms and Las Vegas algorithms
that compute decision problems (i.e. languages) and Monte Carlo algorithms and Las
Vegas algorithms computing optimization problems (Definition (??)).

Exercise (Las Vegas to Monte Carlo). Suppose you are given a Las Vegas algorithm A
that solves f : Σ∗ → Σ∗ in expected time T (n). Show that for any constant ε > 0, there is
a Monte Carlo algorithm that solves f in time O(T (n)) and error probability ε.

Solution. Given the Las Vegas algorithm A and a constant ε > 0, we construct a Monte
Carlo algorithm A′ with the desired properties as follows.

def A′(x) :

1. Run A(x) for
1

ε
T (|x|) steps.

2. If A terminates, return its output.

3. Else, return ‘‘failure’’.

Since ε is a constant, the running time of A′ is O(T (n)). The error probability of the
algorithm can be bounded using Theorem (??) as follows. For any x ∈ Σ∗, let Tx be the
random variable that denotes the number of steps A(x) takes. Note that by Definition
(Las Vegas algorithm), E[Tx] ≤ T (|x|) for all x. In the event of A′(x) failing, it must be
the case that Tx >

1
εT (|x|). So the probability that A′(x) fails can be upper bounded by

Pr

[
Tx >

1

ε
T (|x|)

]
≤ Pr

[
Tx ≥

1

ε
E[Tx]

]
≤ ε,

where the last inequality follows from Markov’s Inequality.
Technicality: There is a small technical issue here. Algorithm A′ needs to be able to

compute T (|x|) from x in O(T (|x|)) time. This is indeed the case for most T (·) that we
care about. �

Exercise (Monte Carlo to Las Vegas). Suppose you are given a Monte Carlo algorithm
A that runs in worst-case T1(n) time and solves f : Σ∗ → Σ∗ with success probability
at least p (i.e., for every input, the algorithm gives the correct answer with probability
at least p and takes at most T1(n) steps). Suppose it is possible to check in T2(n) time
whether the output produced by A is correct or not. Show how to convert A into a Las
Vegas algorithm that runs in expected time O((T1(n) + T2(n))/p).

Solution. Given the Monte Carlo algorithm A as described in the question, we create a
Las Vegas algorithm A′ as follows.

def A′(x) :

1. Repeat:

2. Run A(x).

3. If the output is correct, return the output.

For all x ∈ Σ∗, the algorithm gives the correct answer with probability 1.
For x ∈ Σ∗, define Tx to be the random variable corresponding to the number of

iterations of the above algorithm. Observe that Tx is a geometric random variable (Def-
inition (??)) with success probability p (i.e., Tx ∼ Geometric(p)). The total number of
steps A′(x) takes is thus (T1(|x|) + T2(|x|)) ·Tx (ignoring constant factors). The expecta-
tion of this value is (T1(|x|) + T2(|x|)) · E[Tx], where E[Tx] = 1/p. So the total expected
running time is O((T1(|x|) + T2(|x|))/p). �

2

CMU CS251 Fall 2022

2 Monte Carlo Algorithm for Min-Cut

Definition (Minimum cut problem). In the minimum cut problem, the input is a con-
nected undirected graph G, and the output is a 2-coloring of the vertices, where each
color is used at least once, such that the number of cut edges is minimized. (See Defini-
tion (??) for the definition of a cut edge.) Equivalently, we want to output a non-empty
subset S (V such that the number of edges between S and V \S is minimized. Such a
set S is called a cut and the size of the cut is the number of edges between S and V \S
(note that the size of the cut is not the number of vertices). We denote this problem by
MIN-CUT.

Definition (Multi-graph). A multi-graph G = (V,E) is an undirected graph in which
E is allowed to be a multi-set. In other words, a multi-graph can have multiple edges
between two vertices.1

Definition (Contraction of two vertices in a graph). Let G = (V,E) be a multi-graph
and let u, v ∈ V be two vertices in the graph. Contraction of u and v produces a new
multi-graph G′ = (V ′, E′). Informally, in G′, we collapse/contract the vertices u and v
into one vertex and preserve the edges between these two vertices and the other vertices
in the graph. Formally, we remove the vertices u and v, and create a new vertex called
uv, i.e. V ′ = V \{u, v} ∪ {uv}. The multi-set of edges E′ is defined as follows:

• for each {u,w} ∈ E with w 6= v, we add {uv,w} to E′;

• for each {v, w} ∈ E with w 6= u, we add {uv,w} to E′;

• for each {w,w′} ∈ E with w,w′ 6∈ {u, v}, we add {w,w′} to E′.

Below is an example:

Theorem (Contraction algorithm for min cut). There is a polynomial-time Monte-Carlo al-
gorithm that solves the MIN-CUT problem with error probability at most 1/en, where n is the
number of vertices in the input graph.

Proof. The algorithm has two phases. The description of the first phase is as follows.

def A(〈graph G = (V,E)〉) :

1. Repeat until two vertices remain:

2. Select an edge {u, v} uniformly at random.

3. Update the graph by contracting u and v.

4. Two vertices remain, corresponding to a partition (V1, V2) of V ; return V1.

Let Gi denote the graph we have after i iterations of the algorithm. So G0 = G, G1

is the graph after we contract one of the edges, and so on. Note that the algorithm has
n − 2 iterations because in each iteration the number of vertices goes down by exactly
one and we stop when 2 vertices remain.

1Note that this definition does not allow for self-loops.

3

CMU CS251 Fall 2022

This makes it clear that the algorithm runs in polynomial time: we have n − 2 itera-
tions, and in each iteration we can contract an edge, which can be done in polynomial
time. Our goal now is to show that the success probability of the first phase, i.e., the
probability that the above algorithm outputs a minimum cut, is at least

2

n(n− 1)
≥ 1

n2
.

In the second phase, we’ll boost the success probability to the desired 1−1/en. We make
two observations.
Observation 1: For any i, a cut in Gi of size k corresponds to a cut in G = G0 of size k.
(We leave the proof of this as an exercise.)
Observation 2: For any i and any vertex v in Gi, the size of the minimum cut (in G) is
at most degGi

(v). This is because a single vertex v forms a cut by itself (i.e. S = {v}
is a cut), and the size of this cut is deg(v). By Observation 1, the original graph G has a
corresponding cut with the same size. Since the minimum cut has the minimum possible
size among all cuts in G, its size cannot be larger than deg(v).

We are now ready to analyze the success probability of the first phase. Let F ⊆
E correspond to an optimum solution, i.e., a minimum size set of cut edges, with the
corresponding partition of S and V \ S.

We will show
Pr[algorithm finds F] ≥ 2

n(n− 1)
.

Let’s first observe that the algorithm’s output corresponds to F if and only if it never
contracts an edge of F . The argument for this observation is as follows. First, if the
algorithm picks an edge in F to contract, that edge is removed, and so the output cannot
correspond to F . For the other direction, if the algorithm never contracts an edge in F ,
then that means it only contracts edges within S, or edges within V \ S. The algorithm
keeps contracting edges until two vertices remain, so this means all the vertices in S
merge and become a single vertex, and all the vertices in V \ S merge and become a
single vertex. That is when the algorithm stops and outputs the cut F .

Now letEi be the event that at iteration i of the algorithm, an edge in F is contracted.
As noted above, there are n− 2 iterations in total. Therefore,

Pr[algorithm finds F] = Pr[E1 ∩ E2 ∩ . . . ∩ En−2].

Using Proposition (??), we have

Pr[E1 ∩ E2 ∩ . . . ∩ En−2] =

Pr[E1] ·Pr[E2 | E1] ·Pr[E3 | E1 ∩ E2] · · ·Pr[En−2 | E1 ∩ E2 ∩ . . . ∩ En−3]. (∗) (1)

To lower bound the success probability of the algorithm, we’ll find a lower bound for
each term of the RHS of the above equation. We start with Pr[E1]. It is easy to see that

4

CMU CS251 Fall 2022

Pr[E1] = |F |/m. However, it will be more convenient to have a bound on Pr[E1] in
terms of |F | and n rather than m. By Observation 2 above, we know

∀v ∈ V, |F | ≤ deg(v).

Using this, we have

2m =
∑
v∈V

deg(v) ≥ |F | · n, (∗∗)

or equivalently, |F | ≤ 2m/n. Therefore,

Pr[E1] =
|F |
m
≤ 2

n
,

or equivalently, Pr[E1] ≥ 1 − 2/n. At this point, going back to Equality (*) above, we
can write

Pr[algorithm finds F] ≥(
1− 2

n

)
·Pr[E2 | E1] ·Pr[E3 | E1 ∩ E2] · · ·Pr[En−2 | E1 ∩ E2 ∩ . . . ∩ En−3].

We move onto the second term Pr[E2 | E1]. Let `1 be the number of edges remaining
after the first iteration of the algorithm. Then

Pr[E2 | E1] = 1−Pr[E2 | E1] = 1− |F |
`1
.

As before, using Observation 2, for any v in G1, |F | ≤ degG1
(v). Therefore, the analog of

Inequality (**) above for the graph G1 yields 2`1 ≥ |F |(n− 1). Using this inequality,

Pr[E2 | E1] = 1− |F |
`1
≥ 1− 2|F |

|F |(n− 1)
= 1− 2

n− 1
.

Thus

Pr[algorithm finds F] ≥(
1− 2

n

)
·
(

1− 2

n− 1

)
·Pr[E3 | E1 ∩ E2] · · ·Pr[En−2 | E1 ∩ E2 ∩ . . . ∩ En−3].

Applying the same reasoning for the rest of the terms in the product above, we get

Pr[algorithm finds F] ≥(
1− 2

n

)
·
(

1− 2

n− 1

)
·
(

1− 2

n− 2

)
· · ·
(

1− 2

n− (n− 3)

)
=(

n− 2

n

)
·
(
n− 3

n− 1

)
·
(
n− 4

n− 2

)
· · ·
(

2

4

)
·
(

1

3

)
.

After cancellations between the numerators and denominators of the fractions, the first
two denominators and the last two numerators survive, and the above simplifies to
2/n(n− 1). So we have reached our goal for the first phase and have shown that

Pr[algorithm finds F] ≥ 2

n(n− 1)
=

1(
n
2

) ≥ 1

n2
.

This implies

Pr[algorithm finds a min-cut] ≥ 1

n2
.

5

CMU CS251 Fall 2022

In the second phase of the algorithm, we boost the success probability by repeating
the first phase t times using completely new and independent random choices. Among
the t cuts we find, we return the minimum-sized one. As t grows, the success probability
increases. Our analysis will show that t = n3 is sufficient for the bound we want. Let Ai
be the event that our algorithm does not find a min-cut at repetition i. Note that the Ai’s
are independent since our algorithm uses fresh random bits for each repetition. Also,
each Ai has the same probability, i.e. Pr[Ai] = Pr[Aj] for all i and j. Therefore,

Pr[our algorithm fails to find a min-cut] = Pr[A1 ∩ · · · ∩At]
= Pr[A1] · · ·Pr[At]

= Pr[A1]t.

From the analysis of the first phase, we know that

Pr[A1] ≤ 1− 1

n2
.

So

Pr[our algorithm fails to find a min-cut] ≤
(

1− 1

n2

)t
.

To upper bound this, we’ll use an extremely useful inequality:

∀x ∈ R, 1 + x ≤ ex.

We will not prove this inequality, but we provide a plot of the two functions below.

Notice that the inequality is close to being tight for values of x close to 0. Letting x =
−1/n2, we see that

Pr[our algorithm fails to find a min-cut] ≤ (1 + x)t ≤ ext = e−t/n
2

.

For t = n3, this probability is upper bounded by 1/en, as desired.

Exercise (Boosting for one-sided error). This question asks you to boost the success prob-
ability of a Monte Carlo algorithm computing a decision problem with one-sided error.

Let f : Σ∗ → {0, 1} be a decision problem, and letA be a Monte Carlo algorithm for f
such that if x is a YES instance, then A always gives the correct answer, and if x is a NO
instance, then A gives the correct answer with probability at least 1/2. Suppose A runs
in worst-case O(T (n)) time. Design a new Monte Carlo algorithm A′ for f that runs in
O(nT (n)) time and has error probability at most 1/2n.

Solution. Here is the description of A′.

def A′(x) :

1. Repeat |x| times:
2. Run A(x).

3. If the output is 0, return 0.

4. Return 1.

6

CMU CS251 Fall 2022

We call A(x) n times, and the running time of A is O(T (n)), so the overall running
time of A′ is O(nT (n)).

To prove the required correctness guarantee, we need to show that for all inputs x,
Pr[A′(x) 6= f(x)] ≤ 1/2n. For any x such that f(x) = 1, we know that Pr[A(x) = 1] = 1,
and therefore Pr[A′(x) = 1] = 1. For any x such that f(x) = 0, we know that Pr[A(x) =
0] ≥ 1/2. The only way A′ makes an error in this case is if A(x) returns 1 in each of
the n iterations. So if Ei is the event that in iteration i, A(x) returns the wrong answer
(i.e. returns 1), we are interested in upper bounding Pr[error] = Pr[E1 ∩ E2 ∩ · · · ∩ En].
Note that the Ei’s are independent (one run of A(x) has no effect on other runs of A(x)).
Furthermore, for all i, Pr[Ei] ≤ 1/2. So

Pr[E1 ∩ E2 ∩ · · · ∩ En] = Pr[E1]Pr[E2] · · ·Pr[En] ≤ 1/2n,

as desired. �

Exercise (Boosting for two-sided error). This question asks you to boost the success
probability of a Monte Carlo algorithm computing a decision problem with two-sided
error.

Let f : Σ∗ → {0, 1} be a decision problem, and letA be a Monte Carlo algorithm for f
with error probability 1/4, i.e., for all x ∈ Σ∗, Pr[A(x) 6= f(x)] ≤ 1/4. We want to boost
the success probability to 1 − 1/2n, and our strategy will be as follows. Given x, run
A(x) 6n times (where n = |x|), and output the more common output bit among the 6n
output bits (breaking ties arbitrarily). Show that the probability of outputting the wrong
answer is at most 1/2n.

Solution. Let Xi be a Bernoulli random variable corresponding to whether the algorithm
gives the correct answer in iteration i. That is,

Xi =

{
1 if algorithm gives correct answer in iteration i,
0 otherwise.

Let X =
∑6n
i=1 Xi. So X ∼ Bin(6n, 3/4) (see Definition (??)). Note that

Pr[X = i] =

(
6n

i

)(
3

4

)i(
1

4

)6n−i

.

The algorithm is run 6n times and we take the majority answer, so we make a mistake
only if it was correct at most 3n times, i.e. Pr[error] ≤ Pr[X ≤ 3n], and so

Pr[error] ≤
3n∑
i=0

Pr[X = i] =

3n∑
i=0

(
6n

i

)(
3

4

)i(
1

4

)6n−i

.

We simplify the right-hand-side as follows.

3n∑
i=0

(
6n

i

)(
3

4

)i(
1

4

)6n−i

=

3n∑
i=0

(
6n

i

)
3i

46n

≤
3n∑
i=0

(
6n

i

)
33n

46n

=
33n

46n
·

3n∑
i=0

(
6n

i

)
≤ 33n

46n
· 26n

=
27n

64n
<

1

2n
.

�

7

CMU CS251 Fall 2022

Exercise (Maximum number of minimum cuts). Using the analysis of the randomized
minimum cut algorithm, show that a graph can have at most n(n − 1)/2 distinct mini-
mum cuts.

Solution. Suppose there are t distinct minimum cuts F1, F2, . . . Ft. Our goal is to show
t ≤

(
n
2

)
. Let Ai be the event that the first phase of our algorithm in the proof of Theo-

rem (Contraction algorithm for min cut) outputs Fi (the first phase refers to the phase
before the boosting). We know that for any i, Pr[Ai] ≥ 1/

(
n
2

)
(as shown in the proof).

Furthermore, the events Ai are disjoint (if one happens, another cannot happen). So

Pr[A1 ∪A2 ∪ · · · ∪At] = Pr[A1] + Pr[A2] + · · ·+ Pr[At] ≥
t(
n
2

) .
Since Pr[A1 ∪A2 ∪ · · · ∪At] ≤ 1, we can conclude

t ≤
(
n

2

)
.

�

Exercise (Contracting two random vertices). Suppose we modify the min-cut algorithm
seen in lecture so that rather than picking an edge uniformly at random, we pick 2 ver-
tices uniformly at random and contract them into a single vertex. True or False: The
success probability of the algorithm (excluding the part that boosts the success probabil-
ity) is 1/nk for some constant k, where n is the number of vertices. Justify your answer.

Solution. If the success probability of a randomized algorithm is 1/nk, that means that
for all inputs, the probability that the algorithm gives the desired output is at least 1/nk.
So to show that the success probability cannot be 1/nk, it suffices to present one input
for which the success probability is smaller than 1/nk (e.g. exponentially small).

Let A and B be cliques of size n/2 each. Join them together by a single edge to form
the graph G. Then the minimum cut is S = A with the single edge connecting A and
B being the cut edge. Observe that the algorithm will output this cut if and only if it
never picks vertices a ∈ A and b ∈ B to contract. The probability that the algorithm
never picks a ∈ A and b ∈ B to contract is exponentially small. (We leave this part to the
reader. Note that all you need is a bound; you do not have to calculate the probability
exactly.) �

3 Check Your Understanding

Problem. 1. True or false: When analyzing a randomized algorithm, we assume that
the input is chosen uniformly at random.

2. What is the difference between a Monte Carlo algorithm and a Las Vegas algo-
rithm?

3. Describe the probability tree induced by a Monte Carlo algorithm on a given input.

4. Describe the probability tree induced by a Las Vegas algorithm on a given input.

5. Describe at a high level how to convert a Las Vegas algorithm into a Monte Carlo
algorithm.

6. Describe at a high level how to covert a Monte Carlo algorithm into a Las Vegas
algorithm.

7. In this chapter, we defined the MIN-CUT problem. In the MAX-CUT problem,
given a graph G = (V,E), we want to output a non-empty subset S (V such that
the number of edges between S and V \S is maximized. Suppose for every vertex
v ∈ V , we flip a fair coin and put the vertex in S if the coin comes up heads. Show
that the expected number of cut edges is |E|/2.

8

CMU CS251 Fall 2022

8. Argue, using the result from previous question, why every graph with |E| edges
contains a cut of size at least |E|/2.

9. Outline a general strategy for boosting the success probability of a Monte Carlo
algorithm that computes a decision problem.

10. True or false: For any decision problem, there is a polynomial-time Monte Carlo
algorithm that computes it with error probability equal to 1/2.

11. Suppose we have a Monte-Carlo algorithm for a decision problem with error prob-
ability equal to 1/2. Can we boost the success probability of this algorithm by
repeated trials?

12. True or false: The cut output by the contraction algorithm is uniformly random
among all possible cuts.

13. True or false: The size of a minimum cut in a graph is equal to the minimum degree
of a vertex in the graph.

14. Give an example of a problem for which we have a polynomial-time randomized
algorithm, but we do not know of a polynomial-time deterministic algorithm.

4 High-Order Bits

Important. 1. As always, understanding the definitions is important. Make sure you
are comfortable with the definitions of Monte Carlo and Las Vegas algorithms.

2. We require worst-case guarantees for randomized algorithms. In particular, in this
course, we never consider a randomly chosen input.

3. One of the best ways to understand randomized algorithms is to have a clear un-
derstanding on how they induce a probability tree and what properties those prob-
ability trees have. We have emphasized this point of view in lecture even though
it does not appear in this chapter.

4. It is important to know how to convert a Monte Carlo algorithm into a Las Vegas
algorithm and vice versa.

5. The main example in this chapter is the analysis of the contraction algorithm for
MIN-CUT. There are several interesting ideas in the analysis, and you should make
note of those ideas/tricks. Especially the idea of boosting the success probability
of a randomized algorithm via repeated trials is important.

6. One extremely useful trick that was highlighted in the previous chapter is the cal-
culation of an expectation of a random variable by writing it as a sum of indicator
random variables and using linearity of expectation (see Important Note (??) and
the exercise after it). This trick comes up a lot in the context of randomized algo-
rithms. In particular, you will very likely be asked a question of the form “Give a
randomized algorithm for problem X with the property that the expected number
of Y is equal to Z.” As an example, see the analysis of the randomized algorithm
for MAX-CUT problem covered in lecture.

9

	Monte Carlo and Las Vegas Algorithms
	Monte Carlo Algorithm for Min-Cut
	Check Your Understanding
	High-Order Bits

