
Modular Arithmetic

1 Preliminary Definitions

Definition (A divides B). Let A,B ∈ Z. We say that A divides B (or A is a divisor of B),
denoted A|B, if there is a number C ∈ Z such that B = AC.

Definition (Prime number). Let P ∈ N. We say that P is a prime number if P ≥ 2 and the
only divisors of P are 1 and P .

Definition (Congruence modulo N). Let A,B and N be positive integers. We denote
by A mod N the remainder you get when you divide A by N . Note that A mod N ∈
{0, 1, 2, . . . , N − 1}. We say that A and B are congruent modulo N , denoted A ≡N B (or
A ≡ B mod N), if A mod N = B mod N .

Exercise (A characterization for congruence modulo N). Show that A ≡N B if and only
if N |(A−B).

Solution. If A ≡N B, then by definition, A and B have the same remainder R when they
are divided by N . So we can write A = Q ·N + R for some Q ∈ Z and B = Q′ ·N + R
for some Q′ ∈ Z. Then A−B = (Q−Q′) ·N , and therefore N |(A−B).

Suppose N |(A−B). Write A = Q ·N +R for some Q ∈ Z and R ∈ {0, 1, . . . , N − 1}.
Also write B = Q′ ·N + R′ for some Q′ ∈ Z and R′ ∈ {0, 1, . . . , N − 1}. Then A − B =
(Q − Q′) · N + (R − R′). Since N |(A − B), it must be the case that N |(R − R′). Since
R − R′ is an integer between −(N − 1) and (N − 1), the only way N can divide R − R′

is if R = R′, i.e., A ≡N B. �

Note. The above characterization of A ≡N B can be taken as the definition of A ≡N B.
Indeed, it is used a lot in proofs.

1

CMU CS251 Fall 2022

Definition (gcd). We write gcd(A,B) to denote the greatest common divisor of A and
B. Note that for any A, gcd(A, 1) = 1 and gcd(A, 0) = A.

Definition (Relatively prime). We say that A and B are relatively prime if gcd(A,B) = 1.

In the section below, we first give the definitions of basic modular operations like ad-
dition, subtraction, multiplication, division and exponentiation. We also explore some
of their properties. In the section after, we look at the computational complexity of
these operations. Being able to compute these operations efficiently is crucial for ap-
plications.

2 Modular operations: Definitions and properties

2.1 Addition and subtraction

Definition (ZN). We let ZN denote the set {0, 1, 2, . . . , N − 1}.

Definition (Addition in ZN). For A,B ∈ ZN , we define the addition of A and B, denoted
A+N B, as (A+B) mod N . When N is clear from the context, we can drop the subscript
N from +N and write +. For N = 5, we can represent the addition operation in Z5 using
the following table.

In ZN , the element 0 is called the additive identity. It has the property that for any A ∈ ZN ,
A+N 0 = 0 +N A = A.

Exercise (Addition modulo N behaves nicely). • Show that if A ≡N B and A′ ≡N

B′, then A+A′ ≡N B +B′.

• Show that for any A,B ∈ Z,

(A+B) mod N = (A mod N) +N (B mod N).

Solution. Part 1: Since A ≡N B, we have N |(A − B), and since A′ ≡N B′, we have
N |(A′−B′). This implies N |(A−B)+(A′−B′), or in other words, N |(A+A′)−(B+B′).
And this is equivalent to A+A′ ≡N B +B′.
Part 2: Follows from the previous part and the definition of +N . �

Definition (Additive inverse). Let A ∈ ZN . The additive inverse of A, denoted −A, is
defined to be an element in ZN such that A+N −A = 0.

Exercise (Additive inverses modulo N are unique). Show that every element of ZN has
a unique additive inverse.

Solution. The additive inverse of A ∈ ZN is 0 if A = 0, and is N −A otherwise.
To show uniqueness, assume that −A and −A′ are both additive inverses of A. Then

A+N −A = A+N −A′ = 0, which implies −A = −A′. �

Definition (Subtraction in ZN). Let A,B ∈ ZN . We define “A minus B”, denoted A−NB,
as A+N −B.

2

CMU CS251 Fall 2022

Exercise (Addition table permutation property). Show that in the addition table of ZN ,
every row and column is a permutation of the elements ZN .

Solution. We argue that every row contains distinct elements of ZN , which implies that
every row is a permutation of ZN . Take an arbitrary row, which corresponds to some
element A ∈ ZN . Suppose for the sake of contradiction that two entries of this row are
the same. Then there exists B and B′ in ZN , B 6= B′, such that A+N B = A+N B′. But
then if we add −A to both sides of the equality, we get B = B′, a contradiction.

The argument for the columns is the same. �

2.2 Multiplication and division

Definition (Multiplication in ZN). For A,B ∈ ZN , we define the multiplication of A and
B, denoted A·NB, as AB mod N . If N is clear from the context, we can drop the subscript
N from ·N and write ·. Furthermore, we can even drop · and represent A ·N B as simply
AB.

Exercise (Multiplication modulo N behaves nicely). • Show that if A ≡N B and A′ ≡N

B′, then AA′ ≡N BB′.

• Show that for any A,B ∈ Z,

AB mod N = (A mod N) ·N (B mod N).

Solution. Part 1: Hint: Write the elements as QN + R for some Q ∈ Z and remainder
R ∈ {0, 1, . . . , N − 1}.

Part 2: Follows from Part 1 and the definition of ·N . �

Definition (Multiplicative inverse). Let A ∈ ZN . The multiplicative inverse of A, denoted
A−1, is defined to be an element in ZN such that A ·N A−1 = 1.

Proposition (Multiplicative inverse characterization). Let A,N ∈ N. The multiplicative
inverse of A in ZN exists if and only if gcd(A,N) = 1.

Definition (Division in ZN). Let A,B ∈ ZN , where B has a multiplicative inverse B−1.
Then we define “A divided by B”, denoted A/NB, as A ·N B−1.

Definition (Z∗N). We let Z∗N denote the set {A ∈ ZN : gcd(A,N) = 1}. In other words,
Z∗N is the set of all elements of ZN that have a multiplicative inverse.

Exercise (Z∗N is closed under multiplication). Show that Z∗N is closed under multiplica-
tion, i.e., A,B ∈ Z∗N =⇒ A ·N B ∈ Z∗N .

Solution. If A and B are in Z∗N , then they have inverses A−1, B−1 ∈ Z∗N . To show A ·N B
is in Z∗N , we need to show that it has an inverse modulo N . And indeed, B−1 ·N A−1 is
the inverse of A ·N B since A ·N B ·N B−1 ·N A−1 = 1. �

Note (Multiplication table for Z∗N). Similar to an addition table for ZN , one can consider
a multiplication table for Z∗N . For example, Z∗8 = {1, 3, 5, 7}, and the multiplication table
is as below:

3

CMU CS251 Fall 2022

Exercise (Multiplication table permutation property). Show that in the multiplication
table of Z∗N , every row and column is a permutation of the elements Z∗N .

Solution. We argue that every row contains distinct elements of Z∗N , which implies that
every row is a permutation of Z∗N . Take an arbitrary row, which corresponds to some
element A ∈ Z∗N . Suppose for the sake of contradiction that two entries of this row are
the same. Then there exists B and B′ in Z∗N , B 6= B′, such that A ·N B = A ·N B′. But
then if we multiply both sides of the equality by A−1 we get B = B′, a contradiction.

The argument for the columns is the same. �

Definition (Euler totient function). The Euler totient function ϕ : N → N is defined as
ϕ(N) = |Z∗N |. By convention, ϕ(0) = 0.

Exercise (ϕ(P) and ϕ(PQ)). Show that for P a prime number, ϕ(P) = P − 1. Also show
that for P and Q distinct prime numbers, ϕ(PQ) = (P − 1)(Q− 1).

Solution. We know that ϕ(N) is the number of elements in {0, 1, 2, . . . , N − 1} that are
relatively prime to N . If P is a prime number, then for any A ∈ {1, 2, . . . , P − 1}, we
have gcd(A,P) = 1. And gcd(0, P) = P . So ϕ(P) = P − 1.

When N = PQ for distinct primes P and Q, we need to determine the number of
elements in {0, 1, 2, . . . , PQ − 1} that are relatively prime to PQ. The elements that are
not relatively prime to PQ are 0 and

P, 2P, 3P, . . . , (Q− 1)P,

Q, 2Q, 3Q, . . . , (P − 1)Q.

In total there are 1 + (Q− 1) + (P − 1) = Q+ P − 1 of these elements. Then the number
of elements that are relatively prime to PQ is PQ − (Q + P − 1) = PQ − Q − P + 1 =
(P − 1)(Q− 1). �

2.3 Exponentiation

Definition (Exponentiation in ZN). Let A ∈ ZN and E ∈ Z. We write AE to denote

A ·N A ·N · · · ·N A︸ ︷︷ ︸
E times

.

Theorem (Euler’s Theorem). For any A ∈ Z∗N , Aϕ(N) = 1. Equivalently, for any A,N ∈ Z
with gcd(A,N) = 1, Aϕ(N) ≡N 1.

Proof. (In this proof we drop the subscript N from the multiplication notation.) Take
an arbitrary A ∈ Z∗N . Let B1, B2, . . . , Bk be the elements of Z∗N , where k = ϕ(N). By
Exercise (Multiplication table permutation property), {AB1, AB2, . . . , ABk} = Z∗N . The
product of all the elements in the first set can be written as (AB1)(AB2) · · · (ABk). This
must be equal to the product B1B2 · · ·Bk, i.e.

(AB1)(AB2) · · · (ABk) = B1B2 · · ·Bk.

Dividing both sides by B1B2 · · ·Bk (i.e. multiplying both sides by the inverse of B1B2 · · ·Bk),
we get Ak = 1, as desired.

Note (Fermat’s Little Theorem). When N is a prime number, then Euler’s Theorem is
known as Fermat’s Little Theorem.

Exercise (Reducing exponent modulo ϕ(N)). Let A ∈ Z∗N and E ∈ Z. Show that AE ≡N

AE mod ϕ(N).

4

CMU CS251 Fall 2022

Solution. We can write E = ϕ(N)·Q+R where Q is some integer and R ∈ {0, 1, . . . , ϕ(N)−
1} is the remainder. So E ≡ϕ(N) R. Then

AE = Aϕ(N)·Q+R =
(
Aϕ(N)

)Q
·AR = AR,

where for the last equality, we used Theorem (Euler’s Theorem). �

Exercise (Modular computation by hand). Compute by hand 10298 mod 7.

Solution. Since gcd(102, 7) = 1, we can use the previous exercise and reduce the exponent
modulo 6. So 10298 ≡7 1022. Furthermore, 102 can be reduced modulo 7. So 1022 ≡7 42.
And 16 modulo 7 is 2, which is the answer. �

Important (Exponent lives in Zϕ(N)). What the previous two exercises demonstrate is
that if we are exponentiating an element A ∈ Z∗N , then we can effectively think of the
exponent as living in the set Zϕ(N). This will be important to keep in mind when we
cover Cryptography later.

Definition (Generator in Z∗N). Let A ∈ Z∗N . We say that A is a generator if

{AE : E ∈ Zϕ(N)} = Z∗N .

Theorem (Z∗P contains a generator). If P is a prime number, then Z∗P contains a generator.

3 Modular operations: Computational complexity

In this section, we will look at the computational complexities of doing the basic modular
operations discussed in the previous section. We will use the fact that addition, subtrac-
tion, multiplication and division operations can be computed efficiently in Z. Note that
A mod N is easy to compute by dividing A by N and seeing what the remainder is.

3.1 Addition and subtraction

In order to compute A +N B in ZN , we can simply add A and B in Z and then take the
sum modulo N . To compute A −N B, we can do A + (N − B) in Z and then take the
result modulo N .

3.2 Multiplication and division

In order to compute A ·N B in ZN , we can multiply A and B in Z and then take the
product modulo N . To compute A/NB = A ·N B−1, we first need to figure out whether
B has a multiplicative inverse. Recall that B−1 exists if and only if B and N are rela-
tively prime, i.e. gcd(B,N) = 1. The following algorithm, known as Euclid’s Algorithm,
efficiently computes the greatest common divisor of two numbers.

Algorithm (Euclid’s gcd algorithm). gcd(A,B):

• If B = 0, then return A.

• Else return gcd(B,A mod B).

Exercise (gcd property). Show that if A ≥ B, gcd(A,B) = gcd(A − B,B). Use this to
show that Euclid’s Algorithm correctly computes the greatest common divisor of two
numbers.

5

CMU CS251 Fall 2022

Solution. If x divides A and B, then it must divide A−B. In particular, gcd(A,B) divides
both B and A−B, and therefore gcd(A−B,B) ≥ gcd(A,B).

If x divides A−B and B, then it must divide A. In particular, gcd(A−B,B) divides
both A and B, and therefore gcd(A,B) ≥ gcd(A−B,B).

So we can conclude gcd(A,B) = gcd(A−B,B).
When A ≥ B, if we iteratively use the equality gcd(A,B) = gcd(A−B,B) to subtract

B from the larger number A, then we will eventually arrive at gcd(A,B) = gcd(A mod
B,B). For example:

gcd(6004, 6) = gcd(5998, 6)

= gcd(5992, 6)

= gcd(5986, 6)

· · ·
= gcd(4, 6).

So gcd(6004, 6) eventually ends up at gcd(6004 mod 6, 6).
gcd(A mod B,B) is obviously equal to gcd(B,A mod B). So one can show that Eu-

clid’s algorithm is correct by an induction argument, where the base case corresponds
to the base case of the recursive algorithm, and the induction step corresponds to the
recursive call. �

Exercise (Time complexity of Euclid’s algorithm). Suppose A and B can be represented
with at most n bits each. Give an upper bound on the number of recursive calls Euclid’s
Algorithm makes in terms of n.

Solution. We claim that A mod B ≤ A/2. To see this, we case on whether A ≥ 2B. If
A ≥ 2B, then the claim is true because A mod B is always less than B. If A < 2B, then
the claim is true because A mod B = A−B < A−A/2 = A/2.

Now when we call the algorithm with input (A,B) and make a recursive call, the next
pair of inputs is (B,A mod B). Using the claim above, we have (A mod B) ·B ≤ AB/2.
So in each recursive call, the product of the inputs is going down by a factor of at least
2. And this implies the number of recursive calls is at most log2(AB), which is O(n) if A
and B are at most n-bits. �

Using Euclid’s Algorithm, we can check if gcd(B,N) = 1 and determine if B has a
multiplicative inverse. It turns out that a slight modification of Euclid’s Algorithm also
allows us to compute B−1 if it exists. In order to show this, we first need a definition.

Definition (Miix). Let A,B,C ∈ N. We say that C is a miix of A and B if

C = kA+ `B

for some k, ` ∈ Z.

Exercise (Miix vs gcd 1). Let A,B,C ∈ N. Show that if C is a miix of A and B then C is
a multiple of gcd(A,B).

Solution. Let G = gcd(A,B). If C is a miix of A and B, then C = kA+ `B. Furthermore,
we know we can write A = xG for some integer x, and B = yG for some integer y.
Therefore

C = kA+ `B = kxG+ `yG = G(kx+ `y),

which shows C is a multiple of G. �

Exercise (Miix vs gcd 2). Show how to extend Euclid’s algorithm so that it outputs k and
` such that gcd(A,B) = kA + `B. Then conclude that if C is any multiple of gcd(A,B),
then C is a miix of A and B.

6

CMU CS251 Fall 2022

Solution. Here is the extended Euclid’s algorithm.

def Extended-Euclid(A,B) :

1. If B divides A, return (B, 0, 1).

2. Else:

3. (G, k, `) = Extended-Euclid(B,A mod B)

4. Return (G, `, (k − ` · bA/Bc))

Here, we have modified Euclid’s algorithm to return a tuple of variables; Extended-
Euclid(A,B) = (G, k, `) where G = gcd(A,B) and G = k · A + ` · B. By the correctness
of Euclid’s algorithm, we can conclude that the returned value G is the gcd (both al-
gorithms do the same calculations for G). We use induction on the number of steps to
argue correctness of the returned values (k, `).

Base Case: If B divides A, the algorithm correctly returns k = 0 and ` = 1.
Induction Step: Suppose the algorithm ran for s > 1 steps. By the induction hypothe-

sis, we can assume that G = k·B+`·(A mod B). Since we can write A = q·B+(A mod B)
where q = bA/Bc, we can say G = k · B + `(A − q · B). Thus, the returned tuple
(G, `, k − ` · bA/Bc) is correct.

The above algorithm shows that gcd(A,B) is a miix of A and B. So if C is a multiple
of gcd(A,B), it is also a miix of A and B. �

Suppose B has a multiplicative inverse modulo N , i.e. gcd(B,N) = 1. Then by the
previous exercise, we can obtain k and ` such that 1 = kB + `N . If we take this equation
modulo N , we get that kB ≡N 1. Therefore k is the multiplicative inverse of B.

To sum up, if we want to compute A/NB = A ·N B−1, we can first compute B−1 and
then compute A ·N B−1.

Exercise. Prove Proposition (Multiplicative inverse characterization) using the previous
two exercises.

Solution. The previous two exercises imply that C is a miix of A and B if and only if C
is a multiple of gcd(A,B). Then,

A−1 exists ⇐⇒ ∃k such that kA ≡N 1

⇐⇒ ∃k such that N divides kA− 1

⇐⇒ ∃k, q such that kA− 1 = qN

⇐⇒ ∃k, q such that 1 = kA+ (−q)N
⇐⇒ 1 is a miix of A and N

⇐⇒ gcd(A,N) = 1.

�

3.3 Exponentiation

Given N ∈ N, A ∈ ZN and E ∈ N, we can compute AE mod N efficiently. Assume that
A,E and N can be represented using at most n bits each. The algorithm below is known
as fast modular exponentiation. To understand how the algorithm works, see the example
following the algorithm.

Algorithm (Fast modular exponentiation). FME(A,E,N):

• Repeatedly square A to obtain
A2 mod N , A4 mod N , A8 mod N , . . ., A2n mod N .

7

CMU CS251 Fall 2022

• Multiply together (modulo N) the powers of A so that the product is AE .
To figure out which powers to multiply, look at the binary representation of E.

Consider the example of computing 233753 mod 100. The first step of the algorithm
computes

23372 mod 100

23374 mod 100

23378 mod 100

233716 mod 100

233732 mod 100

by squaring 2337 modulo 100 5 times. The binary representation of 53 is 110101. This
implies that

53 = 1 + 4 + 16 + 32.

Therefore, to calculate 233753 mod 100, the second step of the algorithm does:

(2337 mod 100) · (23374 mod 100) · (233716 mod 100) · (233732 mod 100).

Exercise. Suppose A,E and N are integers that can be represented using at most n bits.
Give an upper bound on the running time of the above algorithm in terms of n.

3.4 Taking roots

Consider the following computational problem. You are given A,E,N ∈ N with A ∈ Z∗N .
The goal is to output B ∈ N such that BE ≡N A. In other words, the goal is to find
the E’th root of A in Z∗N (if it exists). Many experts believe (but cannot prove) that this
problem cannot be computed in polynomial time. The assumed hardness of this problem
is used in the famous RSA cryptosystem (see the chapter on Cryptography for details).

3.5 Taking logarithms

Consider the following computational problem which is known as the Discrete Log
Problem in Z∗P . You are given A,B, P ∈ N, where P is a prime number, A ∈ Z∗P , and
B ∈ Z∗P is a generator (Theorem (Z∗P contains a generator) tells us that Z∗P always con-
tains a generator). The goal is to output X ∈ N such that BX ≡P A. In a sense, this is
like trying to compute logB A in Z∗N . Many experts believe (but cannot prove) that this
problem cannot be computed in polynomial time. The assumed hardness of this prob-
lem is used in the famous Diffie-Hellman secret key exchange protocol (see the chapter
on Cryptography for details).

4 Check Your Understanding

Problem. 1. Wilson’s theorem states that N is prime if and only if (N−1)! ≡N N−1.
Can we use this fact in the obvious way to design a polynomial time algorithm for
isPrime?

2. True or false: Suppose that AK ≡N 1, where A 6= 1. Then ϕ(N)|K.

3. Determine, with proof, 75010002 (mod 251). Note that 251 is prime.

4. Determine, with proof, 251(15
251) (mod 7).

5. Let G be a generator in Z∗N , and let R ∈ Zϕ(N) be chosen uniformly at random. For
every A ∈ Z∗N , determine Pr[GR = A].

8

CMU CS251 Fall 2022

6. Let R ∈ Z∗N be chosen uniformly at random. For every A,B ∈ Z∗N , determine
Pr[A ·N R = B].

7. What is Euler’s Theorem?

8. What is a generator in Z∗N?

9. Consider the addition, subtraction, multiplication, division, exponentiation, taking
logarithm, and taking root. Which of these operations are known to be polynomial-
time solvable when the universe is the integers? Which of them are known to be
polynomial-time solvable in the modular universe?

10. What is an efficient algorithm for finding the multiplicative inverse of an element
in Z∗N?

5 High-Order Bits

Important. 1. The theory behind modular arithmetic should mostly be review. It is
important to know how the basic operations are defined and what kind of proper-
ties they have.

2. For which modular arithmetic operations do we have an efficient algorithm for
(and what is that algorithm)? For which operations do we not expect to have an
efficient algorithm? And for these operations, why don’t the “obvious” algorithms
work? You should have a solid understanding of all these. Please internalize Im-
portant Note (??) and Important Note (??).

9

	Preliminary Definitions
	Modular operations: Definitions and properties
	Addition and subtraction
	Multiplication and division
	Exponentiation

	Modular operations: Computational complexity
	Addition and subtraction
	Multiplication and division
	Exponentiation
	Taking roots
	Taking logarithms

	Check Your Understanding
	High-Order Bits

